SUMMARY Peri-infarct depolarizations (PIDs) are seemingly spontaneous spreading depression-like waves that negatively impact tissue outcome in both experimental and human stroke. Factors triggering PIDs are unknown. Here, we show that somatosensory activation of peri-infarct cortex triggers PIDs when the activated cortex is within a critical range of ischemia. We show that the mechanism involves increased oxygen utilization within the activated cortex, worsening the supply-demand mismatch. We support the concept by clinical data showing that mismatch predisposes to PIDs in human stroke as well. Conversely, transient worsening of mismatch by episodic hypoxemia or hypotension also reproducibly triggers PIDs. Therefore, PIDs are triggered upon supply-demand mismatch transients in metastable peri-infarct hot zones due to increased demand or reduced supply. Based on the data, we propose that minimizing sensory stimulation and hypoxic or hypotensive transients in stroke and brain injury would reduce PID incidence and their adverse impact on outcome.
Spreading depolarization is a wave of neuronal and glial depolarization. Within minutes after spreading depolarization, the neuronal hemichannel pannexin 1 (PANX1) opens and forms a pore complex with the ligand-gated cation channel P2X7, allowing the release of excitatory neurotransmitters to sustain spreading depolarization and activate neuroinflammation. Here, we explore the hypothesis that the P2X7-PANX1 pore complex is a critical determinant of spreading depolarization susceptibility with important consequences for neuroinflammation and trigeminovascular activation. We found that genetic loss of function or ablation of the P2x7 gene inhibits spreading depolarization. Moreover, pharmacological suppression of the P2X7-PANX1 pore complex inhibits spreading depolarization in mice carrying the human familial hemiplegic migraine type 1 R192Q missense mutation as well as in wild-type mice and rats. Pore inhibitors elevate the electrical threshold for spreading depolarization, and reduce spreading depolarization frequency and amplitude. Pore inhibitors also suppress downstream consequences of spreading depolarization such as upregulation of interleukin-1 beta, inducible nitric oxide synthase and cyclooxygenase-2 in the cortex after spreading depolarization. In addition, they inhibit surrogates for trigeminovascular activation, including expression of calcitonin gene-related peptide in the trigeminal ganglion and c-Fos in the trigeminal nucleus caudalis. Our results are consistent with the hypothesis that the P2X7-PANX1 pore complex is a critical determinant of spreading depolarization susceptibility and its downstream consequences, of potential relevance to its signature disorders such as migraine.
Background Drinking during pregnancy has been associated with learning disabilities in affected offspring. At present, there are no clinically effective pharmacotherapeutic interventions for these learning deficits. Here, we examined the effects of ABT-239, a histamine H3 receptor antagonist, on fetal ethanol-induced fear conditioning and spatial memory deficits. Methods and Results Long-Evans rat dams stably consumed a mean of 2.82 g ethanol/kg during a 4-hour period each day during pregnancy. This voluntary drinking pattern produced a mean peak serum ethanol level of 84 mg/dl. Maternal weight gain, litter size and birth weights were not different between the ethanol-consuming and control groups. Female adult offspring from the control and fetal alcohol-exposed (FAE) groups received saline or 1 mg ABT-239/kg 30 minutes prior to fear conditioning training. Three days later, freezing time to the context was significantly reduced in saline-treated FAE rats compared to control. Freezing time in ABT-239-treated FAE rats was not different than that in controls. In the spatial navigation study, adult male offspring received a single injection of saline or ABT-239 30 minutes prior to 12 training trials on a fixed platform version of the Morris Water Task. All rats reached the same performance asymptote on Trials 9 to 12 on Day 1. However, 4 days later, first-trial retention of platform location was significantly worse in the saline-treated FAE rats compared control offspring. Retention by ABT-239-treated FAE rats was similar to that by controls. ABT-239’s effect on spatial memory retention in FAE rats was dose dependent. Conclusions These results suggest that ABT-239 administered prior to training can improve retention of acquired information by FAE offspring on more challenging versions of hippocampal-sensitive learning tasks. Further, the differential effects of ABT-239 in FAE offspring compared to controls raises questions about the impact of fetal ethanol exposure on histaminergic neurotransmission in affected offspring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.