Chagas disease affects more than 10 million people worldwide, and yet, as it has historically been known as a disease of the poor, it remains highly neglected. Two currently available drugs exhibit severe toxicity and low effectiveness, especially in the chronic phase, while new drug discovery has been halted for years as a result of a lack of interest from pharmaceutical companies. Although attempts to repurpose the antifungal drugs posaconazole and ravuconazole (inhibitors of fungal sterol 14␣-demethylase [CYP51]) are finally in progress, development of cheaper and more efficient, preferably Trypanosoma cruzi-specific, chemotherapies would be highly advantageous. We have recently reported that the experimental T. cruzi CYP51 inhibitor VNI cures with 100% survival and 100% parasitological clearance both acute and chronic murine infections with the Tulahuen strain of T. cruzi. In this work, we further explored the potential of VNI by assaying nitro-derivative-resistant T. cruzi strains, Y and Colombiana, in highly stringent protocols of acute infection. The data show high antiparasitic efficacy of VNI and its derivative (VNI/VNF) against both forms of T. cruzi that are relevant for mammalian host infection (bloodstream and amastigotes), with the in vivo potency, at 25 mg/kg twice a day (b.i.d.), similar to that of benznidazole (100 mg/kg/day). Transmission electron microscopy and reverse mutation tests were performed to explore cellular ultrastructural and mutagenic aspects of VNI, respectively. No mutagenic potential could be seen by the Ames test at up to 3.5 M, and the main ultrastructural damage induced by VNI in T. cruzi was related to Golgi apparatus and endoplasmic reticulum organization, with membrane blebs presenting an autophagic phenotype. Thus, these preliminary studies confirm VNI as a very promising trypanocidal drug candidate for Chagas disease therapy. Chagas disease (CD), a neglected lifelong malady caused by the intracellular protozoan parasite Trypanosoma cruzi, is a notorious health problem in Latin America and an emerging global health issue, mainly due to immigration of infected individuals to other continents (primarily to North America and Europe) but also because of broadening of the insect vector distribution areas (1). No vaccine is available, and the current therapy for the infection (nifurtimox [Nf] and benznidazole [Bz]) is largely insufficient, having undesirable side effects and limited efficacy especially in the later chronic stages (2). However, novel compounds for CD do not attract the investment of most pharmaceutical companies, especially due to large costs versus low economic profits, exposing the importance of academic research and technological development support for drug design and development of new leads and hits for this as well as other neglected parasitic illnesses that afflict millions of the poorest people worldwide. In this vein, for over 3 decades inhibitors of sterol biosynthesis have been considered potential antichagasic agents (3-6), because, similar to the...
In vitro and in vivo activities against Trypanosoma cruzi were evaluated for two sesquiterpene lactones: psilostachyin A and cynaropicrin. Cynaropicrin had previously been shown to potently inhibit African trypanosomes in vivo, and psilostachyin A had been reported to show in vivo effects against T. cruzi, albeit in another test design. In vitro data showed that cynaropicrin was more effective than psilostachyin A. Ultrastructural alterations induced by cynaropicrin included shedding events, detachment of large portions of the plasma membrane, and vesicular bodies and large vacuoles containing membranous structures, suggestive of parasite autophagy. Acute toxicity studies showed that one of two mice died at a cynaropicrin dose of 400 mg/kg of body weight given intraperitoneally (i.p.). Although no major plasma biochemical alterations could be detected, histopathology demonstrated that the liver was the most affected organ in cynaropicrin-treated animals. Although cynaropicrin was as effective as benznidazole against trypomastigotes in vitro, the treatment (once or twice a day) of T. cruzi-infected mice (up to 50 mg/kg/day cynaropicrin) did not suppress parasitemia or protect against mortality induced by the Y and Colombiana strains. Psilostachyin A (0.5 to 50 mg/kg/day given once a day) was not effective in the acute model of T. cruzi infection (Y strain), reaching 100% animal mortality. Our data demonstrate that although it is very promising against African trypanosomes, cynaropicrin does not show efficacy compared to benznidazole in acute mouse models of T. cruzi infection.A merican trypanosomiasis, also known as Chagas disease (CD), is a neglected disease caused by the intracellular protozoan Trypanosoma cruzi. Despite a large reduction of new acute cases in recent years due to vectorial transmission control policies, other routes of infection, including vertical transmission (mother to fetus) and ingestion of contaminated food and drinks (1), are still a concern. T. cruzi is restricted to Latin America, where about 10 million people are infected and 25 to 90 million are at risk of acquiring the infection (2). According to the Pan American Health Organization (PAHO) and the World Health Organization (WHO), CD causes between 10,000 and 14,000 deaths per year (3). Currently, only two drugs, benznidazole (Bz) and nifurtimox, are available for chagasic patients (4). However, the poor tolerance to and limited efficacy of these drugs, especially in the later stage of the chronic phase, make the search for novel compounds and therapeutic strategies ever more important as a means to offer alternative therapies to patients refractory to both these nitro derivatives (5).Natural products are an excellent source of active compounds. In fact, despite them comprising Ͻ1 percent of known chemical compounds (DNP 2013 [http://dnp.chemnetbase.com/tour/]; Reaxys 2013 [https://www.reaxys.com/documentation/about _query.htm]), they have supplied or inspired more than half of all new drugs introduced to the market in the last 3 dec...
Five bis-arylimidamides were assayed as anti- agents by ,, and approaches. None were considered to be pan-assay interference compounds. They had a favorable pharmacokinetic landscape and were active against trypomastigotes and intracellular forms, and in combination with benznidazole, they gave no interaction. The most selective agent (28SMB032) tested led to a 40% reduction in parasitemia (0.1 mg/kg of body weight/5 days intraperitoneally) but without mortality protection. target fishing suggested DNA as the main target, but ultrastructural data did not match.
Chagas disease (CD) is caused by the intracellular protozoan parasite Trypanosoma cruzi and affects more than 10 million people in poor areas of Latin America. There is an urgent need for alternative drugs with better safety, broader efficacy, lower costs and shorter time of administration. Thus the biological activity of viniconazole, a chloroaryl-substituted imidazole was investigated using in vitro and in vivo screening models of T. cruzi infection. Ultrastructural findings demonstrated that the most frequent cellular damage was associated with plasma membrane (blebs and shedding events), Golgi (swelling aspects) and the appearance of large numbers of vacuoles suggesting an autophagic process. Our data demonstrated that although this compound is effective against bloodstream and intracellular forms (16 and 24 μ m, respectively) in vitro, it does not present in vivo efficacy. Due to the urgent need for novel agents against T. cruzi, the screening of natural and synthetic products must be further supported with the aim of finding more selective and affordable drugs for CD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.