Chagas disease (CD) is a neglected parasitic condition endemic in the Americas caused by Trypanosoma cruzi. Patients present an acute phase that may or not be symptomatic, followed by lifelong chronic stage, mostly indeterminate, or with cardiac and/or digestive progressive lesions. Benznidazole (BZ) and nifurtimox are the only drugs approved for treatment but not effective in the late chronic phase and many strains of the parasite are naturally resistant. New alternative therapy is required to address this serious public health issue. Repositioning and combination represent faster, and cheaper trial strategies encouraged for neglected diseases. The effect of imatinib (IMB), a tyrosine kinase inhibitor designed for use in neoplasias, was assessed in vitro on T. cruzi and mammalian host cells. In comparison with BZ, IMB was moderately active against different strains and forms of the parasite. The combination IMB + BZ in fixed-ratio proportions was additive. Novel 14 derivatives of IMB were screened and a 3,2-difluoro-2-phenylacetamide (3e) was as potent as BZ on T. cruzi but had low selectivity index. The results demonstrate the importance of phenotypic assays, encourage the improvement of IMB derivatives to reach selectivity and testify to the use of repurposing and combination in drug screening for CD.
Background
Chagas’ disease, caused by the protozoan parasite Trypanosoma cruzi, needs urgent alternative therapeutic options as the treatments currently available display severe limitations, mainly related to efficacy and toxicity.
Objectives
As phosphodiesterases (PDEs) have been claimed as novel targets against T. cruzi, our aim was to evaluate the biological aspects of 12 new phthalazinone PDE inhibitors against different T. cruzi strains and parasite forms relevant for human infection.
Methods
In vitro trypanocidal activity of the inhibitors was assessed alone and in combination with benznidazole. Their effects on parasite ultrastructural and cAMP levels were determined. PDE mRNA levels from the different T. cruzi forms were measured by quantitative reverse transcription PCR.
Results
Five TcrPDEs were found to be expressed in all parasite stages. Four compounds displayed strong effects against intracellular amastigotes. Against bloodstream trypomastigotes (BTs), three were at least as potent as benznidazole. In vitro combination therapy with one of the most active inhibitors on both parasite forms (NPD-040) plus benznidazole demonstrated a quite synergistic profile (xΣ FICI = 0.58) against intracellular amastigotes but no interaction (xΣ FICI = 1.27) when BTs were assayed. BTs treated with NPD-040 presented disrupted Golgi apparatus, a swollen flagellar pocket and signs of autophagy. cAMP measurements of untreated parasites showed that amastigotes have higher ability to efflux this second messenger than BTs. NPD-001 and NPD-040 increase the intracellular cAMP content in both BTs and amastigotes, which is also released into the extracellular milieu.
Conclusions
The findings demonstrate the potential of PDE inhibitors as anti-T. cruzi drug candidates.
Therapies for human African trypanosomiasis and Chagas disease, caused by and, respectively, are limited, providing minimal therapeutic options for the millions of individuals living in very poor communities. Here the effects of 10 novel quinolines are evaluated and by phenotypic studies using and models. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties revealed that most molecules did not infringe on Lipinski's rules, which is a prediction of good oral absorption. These quinolines showed high probabilities of Caco2 permeability and human intestinal absorption and low probabilities of mutagenicity and of hERG1 inhibition. screens against bloodstream forms of demonstrated that all quinolines were more active than the reference drug (benznidazole [Bz]), except for DB2171 and DB2192, with five (DB2187, DB2131, DB2186, DB2191, and DB2217) displaying 50% effective concentrations (ECs) of <3 μM (4-fold lower than that of Bz). Nine quinolines were more effective than Bz (2.7 μM) against amastigotes, showing ECs ranging from 0.6 to 0.1 μM. All quinolines were also highly active against African trypanosomes, showing ECs of ≤0.25 μM. The most potent and highly selective candidates for each parasite species were tested in models. Results for DB2186 were promising in mice with and infections, reaching a 70% reduction of the parasitemia load for, and it cured 2 out of 4 mice infected with DB2217 was also active and cured all 4 mice (100% cure rate) with infection.
Five bis-arylimidamides were assayed as anti- agents by ,, and approaches. None were considered to be pan-assay interference compounds. They had a favorable pharmacokinetic landscape and were active against trypomastigotes and intracellular forms, and in combination with benznidazole, they gave no interaction. The most selective agent (28SMB032) tested led to a 40% reduction in parasitemia (0.1 mg/kg of body weight/5 days intraperitoneally) but without mortality protection. target fishing suggested DNA as the main target, but ultrastructural data did not match.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.