The debate about the ethical implications of Artificial Intelligence dates from the 1960s (Wiener, 1960) (Samuel, 1960). However, in recent years symbolic AI has been complemented and sometimes replaced by (Deep) Neural Networks and Machine Learning (ML) techniques. This has vastly increased its potential utility and impact on society, with the consequence that the ethical debate has gone mainstream. Such a debate has primarily focused on principles-the 'what' of AI ethics (beneficence, non-maleficence, autonomy, justice and explicability)-rather than on practices, the 'how.' Awareness of the potential issues is increasing at a fast rate, but the AI community's ability to take action to mitigate the associated risks is still at its infancy. Therefore, our intention in presenting this research is to contribute to closing the gap between principles and practices by constructing a typology that may help practically-minded developers 'apply ethics' at each stage of the pipeline, and to signal to researchers where further work is needed. The focus is exclusively on Machine Learning, but it is hoped that the results of this research may be easily applicable to other branches of AI. The article outlines the research method for creating this typology, the initial findings, and provides a summary of future research needs.
Italy and the United Kingdom. They will also help watchdogs and others to scrutinize such technologies.What do COVID-19 contact-tracing apps do? Running on a mobile phone, they inform people that they have spent time near someone with the virus. The contacts should then respond according to local rules, for example by isolating themselves. Prompt alerts are key because the incubation time of the virus is up to two weeks [1][2][3][4] .These digital interventions come at a price. Collecting sensitive personal data potentially threatens privacy, equality and fairness. Even if COVID-19 apps are temporary, rapidly rolling out tracing technologies runs the risk of creating permanent, vulnerable records of people's health, movements and social interactions, over which they have little control.More ethical oversight is essential. So far, such concerns have focused on rights to privacy (see go.nature.com/3e7jntx). Some governments have pledged to protect data privacy (see go.nature.com/3grwfe8). Apple and Google are developing a common interface to support apps that do not require central data storage (see Nature http://doi.org/dwc6; Protect privacy, equality and fairness in digital contact tracing with these key questions.Passengers on an underground train in Seoul. South Korea used contact tracing to great effect early in the pandemic.
This article presents a mapping review of the literature concerning the ethics of artificial intelligence (AI) in health care. The goal of this review is to summarise current debates and identify open questions for future research. Five literature databases were searched to support the following research question: how can the primary ethical risks presented by AI-health be categorised, and what issues must policymakers, regulators and developers consider in order to be 'ethically mindful? A series of screening stages were carried out-for example, removing articles that focused on digital health in general (e.g. data sharing, data access, data privacy, surveillance/nudging, consent, ownership of health data, evidence of efficacy)-yielding a total of 156 papers that were included in the review.We find that ethical issues can be (a) epistemic, related to misguided, inconclusive or inscrutable evidence; (b) normative, related to unfair outcomes and transformative effectives; or (c) related to traceability. We further find that these ethical issues arise at six levels of abstraction: individual, interpersonal, group, institutional, and societal or sectoral. Finally, we outline a number of considerations for policymakers and regulators, mapping these to existing literature, and categorising each as epistemic, normative or traceability-related and at the relevant level of abstraction. Our goal is to inform policymakers, regulators and developers of what they must consider if they are to enable health and care systems to capitalise on the dual advantage of ethical AI; maximising the opportunities to cut costs, improve care, and improve the efficiency of health and care systems, whilst proactively avoiding the potential harms. We argue that if action is not swiftly taken in this regard, a new 'AI winter' could occur due to chilling effects related to a loss of public trust in the benefits of AI for health care.
Research on the ethics of algorithms has grown substantially over the past decade. Alongside the exponential development and application of machine learning algorithms, new ethical problems and solutions relating to their ubiquitous use in society have been proposed. This article builds on a review of the ethics of algorithms published in 2016 (Mittelstadt et al. Big Data Soc 3(2), 2016). The goals are to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis of epistemic and normative concerns, and to offer actionable guidance for the governance of the design, development and deployment of algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.