Gold nanoparticles are encapsulatedwithin thermoresponsive pNIPAMmigrogels through an easy two‐stepprotocol. The core/shell structure ofthe composite is characterized by TEM,AFM, PCS, and UV‐vis spectroscopy. The restricted environment and thehigh porosity of the microgel shell arestudied through the overgrowth of thegold core.
Thermoresponsive nanocomposites comprising a gold nanoparticle core and a poly(N‐isopropylacrylamide) (pNIPAM) shell are synthesized by grafting the gold nanoparticle surface with polystyrene, which allows the coating of an inorganic core with an organic shell. Through careful control of the experimental conditions, the pNIPAM shell cross‐linking density can be varied, and in turn its porosity and stiffness, as well as shell thickness from a few to a few hundred nanometers is tuned. The characterization of these core–shell systems is carried out by photon‐correlation spectroscopy, transmission electron microscopy, and atomic force microscopy. Additionally, the porous pNIPAM shells are found to modulate the catalytic activity, which is demonstrated through the seeded growth of gold cores, either retaining the initial spherical shape or developing a branched morphology. The nanocomposites also present thermally modulated optical properties because of temperature‐induced local changes of the refractive index surrounding the gold cores.
Changing faces: The shape of gold nanorods can be finely tuned by controlled growth under sonication in DMF in the presence of poly(vinylpyrrolidone). Reshaping involves the formation of rods with sharp tips and strongly faceted lateral faces, and ultimately leads to perfect, single‐crystal octahedrons (see images). Mechanistic considerations indicate a shape‐inducing effect of the polymer through different binding interactions for the different faces.
A simple procedure for creating titania sol–gel‐based semiconductor thin films is described. Gold nanoparticles are doped homogeneously into the precursor mixture and the particles are homogeneously distributed in the resultant films when prepared using spin‐coating. The effects of particle loading and annealing temperature on the optical properties of the resultant films are characterized. Ellipsometry, X‐ray diffraction, atomic force microscopy, and surface plasmon spectroscopy are used to monitor the crystallization and porosity changes during film synthesis.
A general scaling law connecting the stiffness and dissipative properties of a linear mechanical oscillator immersed in a viscous fluid is derived. This enables the noninvasive experimental determination of the stiffness of small elastic bodies of arbitrary shape by measuring their resonant frequency and quality factor in fluid ͑typically air͒. In so doing, we elucidate the physical basis of the method of Sader et al. ͓Rev. Sci. Instrum. 70, 3967 ͑1999͔͒ for determining the stiffness of rectangular atomic force microscope cantilevers, and discuss its applicability. The validity of the derived general technique is demonstrated by calibrating atomic force microscope cantilevers with complex geometries, and its implications to small bodies in general are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.