Widely known for its recreational use, the cannabis plant also has the potential to act as an antibacterial agent in the medicinal field. The analysis of cannabis plants/products in both pharmacological and forensic studies often requires the separation of compounds of interest and/or accurate identification of the whole cannabinoid profile. In order to provide a complete separation and detection of cannabinoids, a new two-dimensional liquid chromatography method has been developed using acidic potassium permanganate chemiluminescence detection, which has been shown to be selective for cannabinoids. This was carried out using a Luna 100 Å CN column and a Poroshell 120 EC-C18 column in the first and second dimensions, respectively. The method has utilized a large amount of the available separation space with a spreading angle of 48.4° and a correlation of 0.66 allowing the determination of more than 120 constituents and mass spectral identification of ten cannabinoids in a single analytical run. The method has the potential to improve research involved in the characterization of sensitive, complex matrices.
Microbial biodiversity includes biotic and abiotic components that support all life forms by adapting to environmental conditions. Climate change, pollution, human activity, and natural calamities affect microbial biodiversity. Microbes have diverse growth conditions, physiology, and metabolism. Bacteria use signaling systems such as quorum sensing (QS) to regulate cellular interactions via small chemical signaling molecules which also help with adaptation under undesirable survival conditions. Proteobacteria use acyl-homoserine lactone (AHL) molecules as autoinducers to sense population density and modulate gene expression. The LuxI-type enzymes synthesize AHL molecules, while the LuxR-type proteins (AHL transcriptional regulators) bind to AHLs to regulate QS-dependent gene expression. Diverse AHLs have been identified, and the diversity extends to AHL synthases and AHL receptors. This review comprehensively explains the molecular diversity of AHL signaling components of Pseudomonas aeruginosa, Chromobacterium violaceum, Agrobacterium tumefaciens, and Escherichia coli. The regulatory mechanism of AHL signaling is also highlighted in this review, which adds to the current understanding of AHL signaling in Gram-negative bacteria. We summarize molecular diversity among well-studied QS systems and recent advances in the role of QS proteins in bacterial cellular signaling pathways. This review describes AHL-dependent QS details in bacteria that can be employed to understand their features, improve environmental adaptation, and develop broad biomolecule-based biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.