BackgroundThe impact of different classes of microbial pathogens on mortality in severe community-acquired pneumonia is not well elucidated. Previous studies have shown significant variation in the incidence of viral, bacterial and mixed infections, with conflicting risk associations for mortality. We aimed to determine the risk association of microbial aetiologies with hospital mortality in severe CAP, utilising a diagnostic strategy incorporating molecular testing. Our primary hypothesis was that respiratory viruses were important causative pathogens in severe CAP and was associated with increased mortality when present with bacterial pathogens in mixed viral-bacterial co-infections.MethodsA retrospective cohort study from January 2014 to July 2015 was conducted in a tertiary hospital medical intensive care unit in eastern Singapore, which has a tropical climate. All patients diagnosed with severe community-acquired pneumonia were included.ResultsA total of 117 patients were in the study. Microbial pathogens were identified in 84 (71.8%) patients. Mixed viral-bacterial co-infections occurred in 18 (15.4%) of patients. Isolated viral infections were present in 32 patients (27.4%); isolated bacterial infections were detected in 34 patients (29.1%). Hospital mortality occurred in 16 (13.7%) patients. The most common bacteria isolated was Streptococcus pneumoniae and the most common virus isolated was Influenza A. Univariate and multivariate logistic regression showed that serum procalcitonin, APACHE II severity score and mixed viral-bacterial infection were associated with increased risk of hospital mortality. Mixed viral-bacterial co-infections were associated with an adjusted odds ratio of 13.99 (95% CI 1.30–151.05, p = 0.03) for hospital mortality.ConclusionsRespiratory viruses are common organisms isolated in severe community-acquired pneumonia. Mixed viral-bacterial infections may be associated with an increased risk of mortality.
BackgroundChest radiograph (CXR) is a basic diagnostic test in community-acquired pneumonia (CAP) with prognostic value. We developed a CXR-based artificial intelligence (AI) model (CAP AI predictive Engine: CAPE) and prospectively evaluated its discrimination for 30-day mortality.MethodsDeep-learning model using convolutional neural network (CNN) was trained with a retrospective cohort of 2235 CXRs from 1966 unique adult patients admitted for CAP from 1 January 2019 to 31 December 2019. A single-centre prospective cohort between 11 May 2020 and 15 June 2020 was analysed for model performance. CAPE mortality risk score based on CNN analysis of the first CXR performed for CAP was used to determine the area under the receiver operating characteristic curve (AUC) for 30-day mortality.Results315 inpatient episodes for CAP occurred, with 30-day mortality of 19.4% (n=61/315). Non-survivors were older than survivors (mean (SD)age, 80.4 (10.3) vs 69.2 (18.7)); more likely to have dementia (n=27/61 vs n=58/254) and malignancies (n=16/61 vs n=18/254); demonstrate higher serum C reactive protein (mean (SD), 109 mg/L (98.6) vs 59.3 mg/L (69.7)) and serum procalcitonin (mean (SD), 11.3 (27.8) μg/L vs 1.4 (5.9) μg/L). The AUC for CAPE mortality risk score for 30-day mortality was 0.79 (95% CI 0.73 to 0.85, p<0.001); Pneumonia Severity Index (PSI) 0.80 (95% CI 0.74 to 0.86, p<0.001); Confusion of new onset, blood Urea nitrogen, Respiratory rate, Blood pressure, 65 (CURB-65) score 0.76 (95% CI 0.70 to 0.81, p<0.001), respectively. CAPE combined with CURB-65 model has an AUC of 0.83 (95% CI 0.77 to 0.88, p<0.001). The best performing model was CAPE incorporated with PSI, with an AUC of 0.84 (95% CI 0.79 to 0.89, p<0.001).ConclusionCXR-based CAPE mortality risk score was comparable to traditional pneumonia severity scores and improved its discrimination when combined.
Severe rhabdomyolysis is an uncommon but potentially fatal complication of dengue fever that is not well characterised and may be underreported. With the resurgence and continued rise of dengue cases worldwide, physicians must be aware of the less common but serious complications of dengue. Here, we report a patient who presented with severe rhabdomyolysis secondary to dengue fever with a serum creatine kinase of 742 900 U/L.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.