Multiple commercial microarrays for measuring genome-wide gene expression levels are currently available, including oligonucleotide and cDNA, single- and two-channel formats. This study reports on the results of gene expression measurements generated from identical RNA preparations that were obtained using three commercially available microarray platforms. RNA was collected from PANC-1 cells grown in serum-rich medium and at 24 h following the removal of serum. Three biological replicates were prepared for each condition, and three experimental replicates were produced for the first biological replicate. RNA was labeled and hybridized to microarrays from three major suppliers according to manufacturers' protocols, and gene expression measurements were obtained using each platform's standard software. For each platform, gene targets from a subset of 2009 common genes were compared. Correlations in gene expression levels and comparisons for significant gene expression changes in this subset were calculated, and showed considerable divergence across the different platforms, suggesting the need for establishing industrial manufacturing standards, and further independent and thorough validation of the technology.
Global warming mechanisms that cause changes in frequency and intensity of precipitation in the tropics are examined in climate model simulations. Under global warming, tropical precipitation tends to be more frequent and intense for heavy precipitation but becomes less frequent and weaker for light precipitation. Changes in precipitation frequency and intensity are both controlled by thermodynamic and dynamic components. The thermodynamic component is induced by changes in atmospheric water vapor, while the dynamic component is associated with changes in vertical motion. A set of equations is derived to estimate both thermodynamic and dynamic contributions to changes in frequency and intensity of precipitation, especially for heavy precipitation. In the thermodynamic contribution, increased water vapor reduces the magnitude of the required vertical motion to generate the same strength of precipitation, so precipitation frequency increases. Increased water vapor also intensifies precipitation due to the enhancement of water vapor availability in the atmosphere. In the dynamic contribution, the more stable atmosphere tends to reduce the frequency and intensity of precipitation, except for the heaviest precipitation. The dynamic component strengthens the heaviest precipitation in most climate model simulations, possibly due to a positive convective feedback.
[1] A clear trend of tropical precipitation changes induced by global warming is found in hemispherical averages of most climate model simulations as well as from observation. It is observed that in response to global warming, an asymmetric pattern develops between tropical precipitation changes in the northern and southern hemispheres, and this asymmetry is locked with the seasonal cycle of tropical convection. In boreal summer (winter), the northern hemispherical average departure from tropical mean increases (decreases), while the departure of the southern hemispherical average decreases (increases). This implies an enhanced seasonal precipitation range between rainy and dry seasons and an increased precipitation difference b e t w e e n n o r t he r n a n d s o uth e r n h e m i s p he r e s .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.