Rett syndrome (RTT) is a severe neurodevelopmental disorder (NDD) that is nearly always caused by loss of function mutations in Methyl-CpG-binding Protein 2 ( MECP2 ) and shares many clinical features with other NDD. Genetic restoration of Mecp2 in symptomatic mice lacking MeCP2 expression can reverse symptoms, providing hope that disease modifying therapies can be identified for RTT. Effective and rapid clinical trial completion relies on well-defined clinical outcome measures and robust biomarkers of treatment responses. Studies on other NDD have found evidence of differences in neurophysiological measures that correlate with disease severity. However, currently there are no well-validated biomarkers in RTT to predict disease prognosis or treatment responses. To address this, we characterized neurophysiological features in a mouse model of RTT containing a knock-in nonsense mutation (p.R255X) in the Mecp2 locus. We found a variety of changes in heterozygous female Mecp2 R255X/X mice including age-related changes in sleep/wake architecture, alterations in baseline EEG power, increased incidence of spontaneous epileptiform discharges, and changes in auditory evoked potentials. Furthermore, we identified association of some neurophysiological features with disease severity. These findings provide a set of potential non-invasive and translatable biomarkers that can be utilized in preclinical therapy trials in animal models of RTT and eventually within the context of clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.