Rett syndrome (RTT) is a neurodevelopmental disorder primarily caused by mutations in Methyl-CpG-binding Protein 2 (MECP2). More than 35% of affected individuals have nonsense mutations in MECP2. For these individuals, nonsense suppression has been suggested as a possible therapeutic approach. To assess the viability of this strategy, we created and characterized a mouse model with the common p.R294X mutation introduced into the endogenous Mecp2 locus (Mecp2R294X). Mecp2R294X mice exhibit phenotypic abnormalities similar to those seen in complete null mouse models; however, these occur at a later time point consistent with the reduced phenotypic severity seen in affected individuals containing this specific mutation. The delayed onset of severe phenotypes is likely due to the presence of truncated MeCP2 in Mecp2R294X mice. Supplying the MECP2 transgene in Mecp2R294X mice rescued phenotypic abnormalities including early death and demonstrated that the presence of truncated MeCP2 in these mice does not interfere with wild-type MeCP2. In vitro treatment of a cell line derived from Mecp2R294X mice with the nonsense suppression agent G418 resulted in full-length MeCP2 protein production, demonstrating feasibility of this therapeutic approach. Intraperitoneal administration of G418 in Mecp2R294X mice was sufficient to elicit full-length MeCP2 protein expression in peripheral tissues. Finally, intracranial ventricular injection of G418 in Mecp2R294X mice induced expression of full-length MeCP2 protein in the mouse brain. These experiments demonstrate that translational read-through drugs are able to suppress the Mecp2 p.R294X mutation in vivo and provide a proof of concept for future preclinical studies of nonsense suppression agents in RTT.
Rett syndrome is a neurodevelopmental disorder caused predominantly by loss-offunction mutations in MECP2, encoding transcriptional modulator methyl-CpGbinding protein 2 (MeCP2). Although no disease-modifying therapies exist at this time, some proposed therapeutic strategies aim to supplement the mutant allele with a wild-type allele producing typical levels of functional MeCP2, such as gene therapy.Because MECP2 is a dosage-sensitive gene, with both loss and gain of function causing disease, these approaches must achieve a narrow therapeutic window to be both safe and effective. While MeCP2 supplementation rescues RTT-like phenotypes in mouse models, the tolerable threshold of MeCP2 is not clear, particularly for partial loss-of-function mutations. We assessed the safety of genetically supplementing fulllength human MeCP2 in the context of the R294X allele, a common partial loss-offunction mutation retaining DNA-binding capacity. We assessed the potential for adverse effects from MeCP2 supplementation of a partial loss-of-function mutant and the potential for dominant negative interactions between mutant and full-length MeCP2. In male hemizygous R294X mice, MeCP2 supplementation rescued RTT-like behavioral phenotypes and did not elicit behavioral evidence of excess MeCP2. In female heterozygous R294X mice, RTT-specific phenotypes were similarly rescued.However, MeCP2 supplementation led to evidence of excess MeCP2 activity in a motor coordination assay, suggesting that the underlying motor circuitry is particularly sensitive to MeCP2 dosage in females. These results show that genetic supplementation of full-length MeCP2 is safe in males and largely so females. However, careful consideration of risk for adverse motor effects may be warranted for girls and women with RTT.
Rett syndrome (RTT) is a severe neurodevelopmental disorder (NDD) that is nearly always caused by loss of function mutations in Methyl-CpG-binding Protein 2 ( MECP2 ) and shares many clinical features with other NDD. Genetic restoration of Mecp2 in symptomatic mice lacking MeCP2 expression can reverse symptoms, providing hope that disease modifying therapies can be identified for RTT. Effective and rapid clinical trial completion relies on well-defined clinical outcome measures and robust biomarkers of treatment responses. Studies on other NDD have found evidence of differences in neurophysiological measures that correlate with disease severity. However, currently there are no well-validated biomarkers in RTT to predict disease prognosis or treatment responses. To address this, we characterized neurophysiological features in a mouse model of RTT containing a knock-in nonsense mutation (p.R255X) in the Mecp2 locus. We found a variety of changes in heterozygous female Mecp2 R255X/X mice including age-related changes in sleep/wake architecture, alterations in baseline EEG power, increased incidence of spontaneous epileptiform discharges, and changes in auditory evoked potentials. Furthermore, we identified association of some neurophysiological features with disease severity. These findings provide a set of potential non-invasive and translatable biomarkers that can be utilized in preclinical therapy trials in animal models of RTT and eventually within the context of clinical trials.
FOXG1 Syndrome (FS) is a devastating neurodevelopmental disorder that is caused by a heterozygous loss-of-function (LOF) mutation of the FOXG1 gene, which encodes a transcriptional regulator important for telencephalic brain development. People with FS have marked developmental delays, impaired ambulation, movement disorders, seizures, and behavior abnormalities including autistic features. Current therapeutic approaches are entirely symptomatic, however the ability to rescue phenotypes in mouse models of other genetic neurodevelopmental disorders such as Rett syndrome, Angelman syndrome, and Phelan-McDermid syndrome by postnatal expression of gene products has led to hope that similar approaches could help modify the disease course in other neurodevelopmental disorders such as FS. While FoxG1 protein function plays a critical role in embryonic brain development, the ongoing adult expression of FoxG1 and behavioral phenotypes that present when FoxG1 function is removed postnatally provides support for opportunity for improvement with postnatal treatment. Here we generated a new mouse allele of Foxg1 that disrupts protein expression and characterized the behavioral and structural brain phenotypes in heterozygous mutant animals. These mutant animals display changes in locomotor behavior, gait, anxiety, social interaction, aggression, and learning and memory compared to littermate controls. Additionally, they have structural brain abnormalities reminiscent of people with FS. This information provides a framework for future studies to evaluate the potential for post-natal expression of FoxG1 to modify the disease course in this severe neurodevelopmental disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.