Syntrophy is a tightly coupled mutualistic interaction between hydrogen-/formate-producing and hydrogen-/formate-using microorganisms that occurs throughout the microbial world. Syntrophy is essential for global carbon cycling, waste decomposition, and biofuel production. Reverse electron transfer, e.g., the input of energy to drive critical redox reactions, is a defining feature of syntrophy. Genomic analyses indicate multiple systems for reverse electron transfer, including ion-translocating ferredoxin:NAD(+) oxidoreductase and hydrogenases, two types of electron transfer flavoprotein:quinone oxidoreductases, and other quinone reactive complexes. Confurcating hydrogenases that couple the favorable production of hydrogen from reduced ferredoxin with the unfavorable production of hydrogen from NADH are present in almost all syntrophic metabolizers, implicating their critical role in syntrophy. Transcriptomic analysis shows upregulation of many genes without assigned functions in the syntrophic lifestyle. High-throughput technologies provide insight into the mechanisms used to establish and maintain syntrophic consortia and conserve energy from reactions that operate close to thermodynamic equilibrium.
Syntrophic metabolism is diverse in two respects: phylogenetically with microorganisms capable of syntrophic metabolism found in the Deltaproteobacteria and in the low G+C gram-positive bacteria, and metabolically given the wide variety of compounds that can be syntrophically metabolized. The latter includes saturated fatty acids, unsaturated fatty acids, alcohols, and hydrocarbons. Besides residing in freshwater and marine anoxic sediments and soils, microbes capable of syntrophic metabolism also have been observed in more extreme habitats, including acidic soils, alkaline soils, thermal springs, and permanently cold soils, demonstrating that syntrophy is a widely distributed metabolic process in nature. Recent ecological and physiological studies show that syntrophy plays a far larger role in carbon cycling than was previously thought. The availability of the first complete genome sequences for four model microorganisms capable of syntrophic metabolism provides the genetic framework to begin dissecting the biochemistry of the marginal energy economies and interspecies interactions that are characteristic of the syntrophic lifestyle.
Summary of recent advances Syntrophy is an essential intermediary step in the anaerobic conversion of organic matter to methane where metabolically distinct microorganisms are tightly linked by the need to maintain the exchanged metabolites at very low concentrations. The need for syntrophy is thermodynamically constrained, and is probably a prime reason why it is difficult to culture microbes as these approaches disrupt consortia. Reconstruction of artificial syntrophic consortia has allowed uncultured syntrophic metabolizers and methanogens to be optimally grown and studied biochemically. The pathways for syntrophic acetate, propionate and longer chain fatty acid metabolism are mostly understood, but key steps involved in benzoate breakdown and cyclohexane carboxylate formation are unclear. Syntrophic metabolism requires reverse electron transfer, close physical contact, and metabolic synchronization of the syntrophic partners. Genomic analyses reveal that multiple mechanisms exist for reverse electron transfer. Surprisingly, the flagellum functions were implicated in ensuring close physical proximity and synchronization of the syntrophic partners.
Biochemically, the syntrophic bacteria constitute the missing link in our understanding of anaerobic flow of carbon in the biosphere. The completed genome sequence of Syntrophus aciditrophicus SB, a model fatty acid-and aromatic acid-degrading syntrophic bacterium, provides a glimpse of the composition and architecture of the electron transfer and energy-transducing systems needed to exist on marginal energy economies of a syntrophic lifestyle. The genome contains 3,179,300 base pairs and 3,169 genes where 1,618 genes were assigned putative functions. Metabolic reconstruction of the gene inventory revealed that most biosynthetic pathways of a typical Gram-negative microbe were present. A distinctive feature of syntrophic metabolism is the need for reverse electron transport; the presence of a unique Rnf-type ion-translocating electron transfer complex, menaquinone, and membrane-bound Fe-S proteins with associated heterodisulfide reductase domains suggests mechanisms to accomplish this task. Previously undescribed approaches to degrade fatty and aromatic acids, including multiple AMP-forming CoA ligases and acyl-CoA synthetases seem to be present as ways to form and dissipate ion gradients by using a sodium-based energy strategy. Thus, S. aciditrophicus, although nutritionally self-sufficient, seems to be a syntrophic specialist with limited fermentative and respiratory metabolism. Genomic analysis confirms the S. aciditrophicus metabolic and regulatory commitment to a nonconventional mode of life compared with our prevailing understanding of microbiology.anaerobic food chains ͉ syntrophic metabolism ͉ fatty acid and benzoate utilization
BackgroundThe fermentation of dietary fiber to various organic acids is a beneficial function provided by the microbiota in the human large intestine. In particular, butyric acid contributes to host health by facilitating maintenance of epithelial integrity, regulating inflammation, and influencing gene expression in colonocytes. We sought to increase the concentration of butyrate in 20 healthy young adults through dietary supplementation with resistant starch (unmodified potato starch—resistant starch (RS) type 2).MethodsFecal samples were collected from individuals to characterize butyrate concentration via liquid chromatography and composition of the microbiota via surveys of 16S rRNA-encoding gene sequences from the Illumina MiSeq platform. Random Forest and LEfSe analyses were used to associate responses in butyrate production to features of the microbiota.ResultsRS supplementation increased fecal butyrate concentrations in this cohort from 8 to 12 mmol/kg wet feces, but responses varied widely between individuals. Individuals could be categorized into three groups based upon butyrate concentrations before and during RS: enhanced, high, and low (n = 11, 3, and 6, respectively). Fecal butyrate increased by 67 % in the enhanced group (from 9 to 15 mmol/kg), while it remained ≥11 mmol/kg in the high group and ≤8 mmol/kg in the low group. Microbiota analyses revealed that the relative abundance of RS-degrading organisms—Bifidobacterium adolescentis or Ruminococcus bromii—increased from ~2 to 9 % in the enhanced and high groups, but remained at ~1.5 % in the low group. The lack of increase in RS-degrading bacteria in the low group may explain why there was no increase in fecal butyrate in response to RS. The microbiota of individuals in the high group were characterized by an elevated abundance of the butyrogenic microbe Eubacterium rectale (~6 % in high vs. 3 % in enhanced and low groups) throughout the study.ConclusionsWe document the heterogeneous responses in butyrate concentrations upon RS supplementation and identify characteristic of the microbiota that appear to underlie this variation. This study complements and extends other studies that call for personalized approaches to manage beneficial functions provided by gut microbiomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.