Energy storage systems with Li-ion batteries are increasingly deployed to maintain a robust and resilient grid and facilitate the integration of renewable energy resources. However, appropriate selection of cells for different applications is difficult due to limited public data comparing the most commonly used off-the-shelf Li-ion chemistries under the same operating conditions. This article details a multi-year cycling study of commercial LiFePO4 (LFP), LiNixCoyAl1−x−yO2 (NCA), and LiNixMnyCo1−x−yO2 (NMC) cells, varying the discharge rate, depth of discharge (DOD), and environment temperature. The capacity and discharge energy retention, as well as the round-trip efficiency, were compared. Even when operated within manufacturer specifications, the range of cycling conditions had a profound effect on cell degradation, with time to reach 80% capacity varying by thousands of hours and cycle counts among cells of each chemistry. The degradation of cells in this study was compared to that of similar cells in previous studies to identify universal trends and to provide a standard deviation for performance. All cycling files have been made publicly available at batteryarchive.org, a recently developed repository for visualization and comparison of battery data, to facilitate future experimental and modeling efforts.
Numerous natural surfaces have micro/nanostructures that result in extraordinary functionality, such as superhydrophobicity, self‐cleaning, antifogging, and antimicrobial properties. One such example is the cicada wing, where differences in nanopillar geometry and composition among species can impact and influence the degree of exhibited properties. To understand the relationships between surface topography and chemical composition with multifunctionality, the wing properties of Neotibicen pruinosus (superhydrophobic) and Magicicada cassinii (hydrophobic) cicadas are investigated at time points after microwave‐assisted extraction of surface molecules to characterize the chemical contribution to nanopillar functionality. Electron microscopy of the wings throughout the extraction process illustrates nanoscale topographical changes, while concomitant changes in hydrophobicity, bacterial fouling, and bactericidal properties are also measured. Extract analysis reveals the major components of the nanostructures to be fatty acids and saturated hydrocarbons ranging from C17 to C44. Effects on the antimicrobial character of a wing surface with respect to the extracted chemicals suggest that the molecular composition of the nanopillars plays both a direct and an indirect role in concert with nanopillar geometry. The data presented not only correlates the nanopillar molecular organization to macroscale functional properties, but it also presents design guidelines to consider during the replication of natural nanostructures onto engineered substrates to induce desired properties.
Nanoimprinting lithography (NIL) is a nextgeneration nanofabrication method, capable of replicating nanostructures from original master surfaces. Here, we develop highly scalable, simple, and nondestructive NIL using a dissolvable template. Termed dissolvable template nanoimprinting lithography (DT-NIL), our method utilizes an economic thermoplastic resin to fabricate nanoimprinting templates, which can be easily dissolved in simple organic solvents. We used the DT-NIL method to replicate cicada wings which have surface nanofeatures of ∼100 nm in height. The master, template, and replica surfaces showed a >∼94% similarity based on the measured diameter and height of the nanofeatures. The versatility of DT-NIL was also demonstrated with the replication of re-entrant, multiscale, and hierarchical features on fly wings, as well as hard silicon wafer-based artificial nanostructures. The DT-NIL method can be performed under ambient conditions with inexpensive materials and equipment. Our work opens the door to opportunities for economical and highthroughput nanofabrication processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.