Summary Mixed lineage kinase 3 (MLK3) is a MAP3K that activates the JNK-dependent MAPK pathways. Here we show that MLK3 is required for cell migration in a manner independent of its role as a MAP3K or MLK3 kinase activity. Rather, MLK3 functions in a regulated way to limit levels of the activated GTPase, Rho, by binding to the Rho activator, p63RhoGEF/GEFT, which, in turn, prevents its activation by Gαq. These findings demonstrate a scaffolding role for MLK3 in controlling the extent of Rho activation that modulates cell migration. Moreover, they suggest that MLK3 functions as a network hub that links a number of signaling pathways.
Wnt proteins constitute a family of secreted signaling molecules that regulate highly conserved pathways essential for development and, when aberrantly activated, drive oncogenesis in a number of human cancers. A key feature of the most widely studied Wnt signaling cascade is the stabilization of cytosolic β-catenin, resulting in β-catenin nuclear translocation and transcriptional activation of multiple target genes. In addition to this canonical, β-catenin-dependent pathway, Wnt3A has also been shown to stimulate RhoA GTPase. While the importance of activated Rho to non-canonical Wnt signaling is well appreciated, the potential contribution of Wnt3A–stimulated RhoA to canonical β-catenin-dependent transcription has not been examined and is the focus of this study. We find that activated Rho is required for Wnt3A–stimulated osteoblastic differentiation in C3H10T1/2 mesenchymal stem cells, a biological phenomenon mediated by stabilized β–catenin. Using expression microarrays and real-time RT-PCR analysis, we show that Wnt3A–stimulated transcription of a subset of target genes is Rho-dependent, indicating that full induction of these Wnt targets requires both β-catenin and Rho activation. Significantly, neither β–catenin stabilization nor nuclear translocation stimulated by Wnt3A is affected by inhibition or activation of RhoA. These findings identify Rho activation as a critical element of the canonical Wnt3A–stimulated, β–catenin-dependent transcriptional program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.