The weight of evidence gathered from studies in humans with hereditary polycystic kidney disease (PKD)1 and PKD2 disorders, as well as from experimental animal models, indicates that cysts are primarily responsible for the decline in glomerular filtration rate that occurs fairly late in the course of the disease. The processes underlying this decline include anatomic disruption of glomerular filtration and urinary concentration mechanisms on a massive scale, coupled with compression and obstruction by cysts of adjacent nephrons in the cortex, medulla and papilla. Cysts prevent the drainage of urine from upstream tributaries, which leads to tubule atrophy and loss of functioning kidney parenchyma by mechanisms similar to those found in ureteral obstruction. Cyst-derived chemokines, cytokines and growth factors result in a progression to fibrosis that is comparable with the development of other progressive end-stage renal diseases. Treatment of renal cystic disorders early enough to prevent or reduce cyst formation or slow cyst growth, before the secondary changes become widespread, is a reasonable strategy to prolong the useful function of kidneys in patients with autosomal dominant polycystic kidney disease.
Renal M2-like macrophages have critical roles in tissue repair stimulating tubule cell proliferation and, if they remain, fibrosis. M2-like macrophages have also been implicated in promoting cyst expansion in mouse models of autosomal dominant polycystic kidney disease (ADPKD). While renal macrophages have been documented in human ADPKD, there are no studies in autosomal recessive polycystic kidney disease (ARPKD). Here we evaluated the specific phenotype of renal macrophages and their disease-impacting effects on cystic epithelial cells. We found an abundance of M2-like macrophages in the kidneys of patients with either ADPKD or ARPKD and in the cystic kidneys of cpk mice, a model of ARPKD. Renal epithelial cells from either human ADPKD cysts or non-cystic human kidneys promote differentiation of naive macrophages to a distinct M2-like phenotype in culture. Reciprocally, these immune cells stimulate the proliferation of renal tubule cells and microcyst formation in vitro. Further, depletion of macrophages from cpk mice indicated that macrophages contribute to PKD progression regardless of the genetic etiology. Thus M2-like macrophages are two-pronged progression factors in PKD promoting cyst cell proliferation, cyst growth, and fibrosis. Agents that block the emergence of these cells or their effects in the cystic kidney may be effective therapies for slowing PKD progression.
Summary
Mixed lineage kinase 3 (MLK3) is a MAP3K that activates the JNK-dependent MAPK pathways. Here we show that MLK3 is required for cell migration in a manner independent of its role as a MAP3K or MLK3 kinase activity. Rather, MLK3 functions in a regulated way to limit levels of the activated GTPase, Rho, by binding to the Rho activator, p63RhoGEF/GEFT, which, in turn, prevents its activation by Gαq. These findings demonstrate a scaffolding role for MLK3 in controlling the extent of Rho activation that modulates cell migration. Moreover, they suggest that MLK3 functions as a network hub that links a number of signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.