BackgroundWhereas acute nicotine administration alters brain function which may, in turn, contribute to enhanced attention and performance, chronic cigarette smoking is linked with regional brain atrophy and poorer cognition. However, results from structural magnetic resonance imaging (MRI) studies comparing smokers versus nonsmokers have been inconsistent and measures of gray matter possess limited ability to inform functional relations or behavioral implications. The purpose of this study was to address these interpretational challenges through meta-analytic techniques in the service of clarifying the impact of chronic smoking on gray matter integrity and more fully contextualizing such structural alterations.MethodsWe first conducted a coordinate-based meta-analysis of structural MRI studies to identify consistent structural alterations associated with chronic smoking. Subsequently, we conducted two additional meta-analytic assessments to enhance insight into potential functional and behavioral relations. Specifically, we performed a multimodal meta-analytic assessment to test the structural–functional hypothesis that smoking-related structural alterations overlapped those same regions showing acute nicotinic drug-induced functional modulations. Finally, we employed database driven tools to identify pairs of structurally impacted regions that were also functionally related via meta-analytic connectivity modeling, and then delineated behavioral phenomena associated with such functional interactions via behavioral decoding.ResultsAcross studies, smoking was associated with convergent structural decreases in the left insula, right cerebellum, parahippocampus, multiple prefrontal cortex (PFC) regions, and the thalamus. Indicating a structural–functional relation, we observed that smoking-related gray matter decreases overlapped with the acute functional effects of nicotinic agonist administration in the left insula, ventromedial PFC, and mediodorsal thalamus. Suggesting structural-behavioral implications, we observed that the left insula’s task-based, functional interactions with multiple other structurally impacted regions were linked with pain perception, the right cerebellum’s interactions with other regions were associated with overt body movements, interactions between the parahippocampus and thalamus were linked with memory processes, and interactions between medial PFC regions were associated with face processing.ConclusionsCollectively, these findings emphasize brain regions (e.g., ventromedial PFC, insula, thalamus) critically linked with cigarette smoking, suggest neuroimaging paradigms warranting additional consideration among smokers (e.g., pain processing), and highlight regions in need of further elucidation in addiction (e.g., cerebellum).Electronic supplementary materialThe online version of this article (doi:10.1186/s12993-016-0100-5) contains supplementary material, which is available to authorized users.
1Cognitive processes do not occur by pure insertion and instead depend on the full complement of co-2 occurring mental processes, including perceptual and motor functions. As such, there is limited ecological 3 validity to human neuroimaging experiments that use highly controlled tasks to isolate mental processes of 4 interest. However, a growing literature shows how dynamic, interactive tasks have allowed researchers to 5 study cognition as it more naturally occurs. Collective analysis across such neuroimaging experiments may 6 answer broader questions regarding how naturalistic cognition is biologically distributed throughout the 7 brain. We applied an unbiased, data-driven, meta-analytic approach that uses k-means clustering to identify
The habenula, an epithalamic nucleus involved in reward and aversive processing, may contribute to negative reinforcement mechanisms maintaining nicotine use. We used a performance feedback task that differentially activates the striatum and habenula and administered nicotine and varenicline (versus placebos) to overnight-abstinent smokers and nonsmokers to delineate feedback-related functional brain alterations both as a function of smoking trait (smokers versus nonsmokers) and drug administration state (drug versus placebo). Smokers showed less striatal responsivity to positive feedback, an alteration not mitigated by drug administration, but rather correlated with trait-level addiction severity. Conversely, nicotine administration reduced habenula activity following both positive and negative feedback among abstinent smokers, but not nonsmokers, and increased habenula activity among smokers correlated with elevated state-level tobacco cravings. These outcomes highlight a dissociation between neurobiological processes linked with the dependence severity trait and the nicotine withdrawal state. Interventions simultaneously targeting both aspects may improve currently poor cessation outcomes.
Cognitive processes do not occur by pure insertion and instead depend on the full complement of co-occurring mental processes, including perceptual and motor functions. As such, there is limited ecological validity to human neuroimaging experiments that use highly controlled tasks to isolate mental processes of interest. However, a growing literature shows how dynamic, interactive tasks have allowed researchers to study cognition as it more naturally occurs. Collective analysis across such neuroimaging experiments may answer broader questions regarding how naturalistic cognition is biologically distributed throughout the brain. We applied an unbiased, data-driven, meta-analytic approach that uses k-means clustering to identify core brain networks engaged across the naturalistic functional neuroimaging literature. Functional decoding allowed us to, then, delineate how information is distributed between these networks throughout the execution of dynamical cognition in realistic settings. This analysis revealed six recurrent patterns of brain activation, representing sensory, domain-specific, and attentional neural networks that support the cognitive demands of naturalistic paradigms. Although gaps in the literature remain, these results suggest that naturalistic fMRI paradigms recruit a common set of networks that allow both separate processing of different streams of information and integration of relevant information to enable flexible cognition and complex behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.