Learning a second language in childhood is inherently advantageous for communication. However, parents, educators and scientists have been interested in determining whether there are additional cognitive advantages. One of the most exciting yet controversial 1 findings about bilinguals is a reported advantage for executive function. That is, several studies suggest that bilinguals perform better than monolinguals on tasks assessing cognitive abilities that are central to the voluntary control of thoughts and behaviours-the so-called 'executive functions' (for example, attention, inhibitory control, task switching and resolving conflict). Although a number of small-2-4 and large-sample 5,6 studies have reported a bilingual executive function advantage (see refs. 7-9 for a review), there have been several failures to replicate these findings 10-15 , and recent meta-analyses have called into question the reliability of the original empirical claims 8,9. Here we show, in a very large sample (n = 4,524) of 9-to 10-year-olds across the United States, that there is little evidence for a bilingual advantage for inhibitory control, attention and task switching, or cognitive flexibility, which are key aspects of executive function. We also replicate previously reported disadvantages in English vocabulary in bilinguals 7,16,17. However, these English vocabulary differences are substantially mitigated when we account for individual differences in socioeconomic status or intelligence. In summary, notwithstanding the inherently positive benefits Reprints and permissions information is available at www.nature.com/reprints.
BackgroundWhereas acute nicotine administration alters brain function which may, in turn, contribute to enhanced attention and performance, chronic cigarette smoking is linked with regional brain atrophy and poorer cognition. However, results from structural magnetic resonance imaging (MRI) studies comparing smokers versus nonsmokers have been inconsistent and measures of gray matter possess limited ability to inform functional relations or behavioral implications. The purpose of this study was to address these interpretational challenges through meta-analytic techniques in the service of clarifying the impact of chronic smoking on gray matter integrity and more fully contextualizing such structural alterations.MethodsWe first conducted a coordinate-based meta-analysis of structural MRI studies to identify consistent structural alterations associated with chronic smoking. Subsequently, we conducted two additional meta-analytic assessments to enhance insight into potential functional and behavioral relations. Specifically, we performed a multimodal meta-analytic assessment to test the structural–functional hypothesis that smoking-related structural alterations overlapped those same regions showing acute nicotinic drug-induced functional modulations. Finally, we employed database driven tools to identify pairs of structurally impacted regions that were also functionally related via meta-analytic connectivity modeling, and then delineated behavioral phenomena associated with such functional interactions via behavioral decoding.ResultsAcross studies, smoking was associated with convergent structural decreases in the left insula, right cerebellum, parahippocampus, multiple prefrontal cortex (PFC) regions, and the thalamus. Indicating a structural–functional relation, we observed that smoking-related gray matter decreases overlapped with the acute functional effects of nicotinic agonist administration in the left insula, ventromedial PFC, and mediodorsal thalamus. Suggesting structural-behavioral implications, we observed that the left insula’s task-based, functional interactions with multiple other structurally impacted regions were linked with pain perception, the right cerebellum’s interactions with other regions were associated with overt body movements, interactions between the parahippocampus and thalamus were linked with memory processes, and interactions between medial PFC regions were associated with face processing.ConclusionsCollectively, these findings emphasize brain regions (e.g., ventromedial PFC, insula, thalamus) critically linked with cigarette smoking, suggest neuroimaging paradigms warranting additional consideration among smokers (e.g., pain processing), and highlight regions in need of further elucidation in addiction (e.g., cerebellum).Electronic supplementary materialThe online version of this article (doi:10.1186/s12993-016-0100-5) contains supplementary material, which is available to authorized users.
We present a novel strategy for deriving a classification system of functional neuroimaging paradigms that relies on hierarchical clustering of experiments archived in the BrainMap database. The goal of our proof-of-concept application was to examine the underlying neural architecture of the face perception literature from a meta-analytic perspective, as these studies include a wide range of tasks. Task-based results exhibiting similar activation patterns were grouped as similar, while tasks activating different brain networks were classified as functionally distinct. We identified four sub-classes of face tasks: (1) Visuospatial Attention and Visuomotor Coordination to Faces, (2) Perception and Recognition of Faces, (3) Social Processing and Episodic Recall of Faces, and (4) Face Naming and Lexical Retrieval. Interpretation of these sub-classes supports an extension of a well-known model of face perception to include a core system for visual analysis and extended systems for personal information, emotion, and salience processing. Overall, these results demonstrate that a large-scale data mining approach can inform the evolution of theoretical cognitive models by probing the range of behavioral manipulations across experimental tasks.
Problem solving is a complex skill engaging multi-stepped reasoning processes to find unknown solutions. The breadth of real-world contexts requiring problem solving is mirrored by a similarly broad, yet unfocused neuroimaging literature, and the domain-general or context-specific brain networks associated with problem solving are not well understood. To more fully characterize those brain networks, we performed activation likelihood estimation meta-analysis on 280 neuroimaging problem solving experiments reporting 3166 foci from 1919 individuals across 131 papers. The general map of problem solving revealed broad fronto-cingulo-parietal convergence, regions similarly identified when considering separate mathematical, verbal, and visuospatial problem solving domain-specific analyses. Conjunction analysis revealed a common network supporting problem solving across diverse contexts, and difference maps distinguished functionally-selective sub-networks specific to task type. Our results suggest cooperation between representationally specialized sub-network and whole-brain systems provide a neural basis for problem solving, with the core network contributing general purpose resources to perform cognitive operations and manage problem demand. Further characterization of cross-network dynamics could inform neuroeducational studies on problem solving skill development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.