Repeatabilities of 12 meat quality measurements were calculated as a value for the accuracy of those measurements. Sixty-four Duroc and Dutch Yorkshire boars and gilts were slaughtered during 8 wk. The repeatabilities between carcass halves within animals were .53 for repeated taste panel tenderness scores based on 12.4 observations of different panelists per mean, .08 for two repeated tenderness scores of different panelists within one animal, .50 for two repeated tenderness scores of one panelist within one animal, and 41 for repeated measurements of maximum shear force. Repeatabilities of other meat quality traits ranged from .29 for cooking loss to .76 for the Minolta L* color coordinate. The phenotypic correlation between tenderness assessed by a panel and maximum shear force was -.50. The phenotypic correlation between those traits corrected for measurement errors was -.74. A correlation of zero was found between the total amount of collagen and meat tenderness, between amount of intramuscular fat and tenderness, and between ultimate pH and tenderness. The other correlations with meat tenderness ranged from -.00 for Minolta b* color coordinate to -.44 for drip loss. It was concluded that the measurement of maximum shear force can be used as an effective indicator of pig meat tenderness.
Survival of microencapsulated L. plantarum IS-10506 is increased compared to free cells in a validated in vitro model of the upper GI tract. It increases its use as an ingredient of functional foods.
The effect of a Citrus Fruit Extract high in the polyphenols hesperidin and naringin (CFE) on modulation of the composition and activity of the gut microbiota was tested in a validated, dynamic in vitro model of the colon (TIM-2). CFE was provided at two doses (250 and 350 mg/day) for 3 days. CFE led to a dose-dependent increase in Roseburia, Eubacterium ramulus, and Bacteroides eggerthii. There was a shift in production of short-chain fatty acids, where acetate production increased on CFE, while butyrate decreased. In overweight and obesity, acetate has been shown to increase fat oxidation when produced in the distal gut, and stimulate secretion of appetite-suppressive neuropeptides. Thus, the data in the in vitro model point towards mechanisms underlying the effects of the polyphenols in CFE with respect to modulation of the gut microbiota, both in composition and activity. These results should be confirmed in a clinical trial.
The aim of the research was to develop a galenical formulation for the combination of the three probiotic strains Lactobacillus gasseri PA 16/8, Bifidobacterium longum SP 07/3 and Bifidobacterium bifidum MF 20/5 that would lead to the presence of a high amount of viable cells in the small intestine, the presumed site of action of these strains. This was tested in a validated, dynamic in vitro model of the stomach and small intestine (TIM‐1), simulating human adults after intake of a meal. Experiments were performed both in the gastric compartment of the model, as well as in the complete system (stomach + small intestine). Survival of the strains in an unformulated probiotic powder after transit through the gastric compartment was 5·3% for the bifidobacteria and 1% for L. gasseri. After transit through the complete gastrointestinal tract, this dropped to 2% for bifidobacteria and 0·1% for Lactobacillus. After several rounds of optimization, an enteric‐coated tablet was developed that increased the delivery of viable cells reaching the small intestine to 72% (gastric survival) for bifidobacteria, and 53% (gastric) for L. gasseri. Also survival in the small intestine increased by about an order of magnitude. The final galenical formulation was tested in two applications: adults and elderly, both of which have their own physiological parameters. These experiments corroborated the results obtained in the development phase of the project. In conclusion, the developed enteric coating led to a 20‐ to 40‐fold increase in the delivery of viable cells to the small intestine.Significance and Impact of the StudyPredictive GI in vitro models are very helpful and reliable tools for the development of new galenical formula containing probiotics, and in the current example helped to deliver >10‐fold higher numbers of viable cells to the small intestine, presumably leading to improved functionality of the strains.
The aim of the study was to investigate the prebiotic potential of xylo-oligosaccharides (XOS) from sugarcane in a validated, dynamic, computer-controlled in vitro model of the colon (TIM-2) simulating human adults. In two sets of experiments, each with a different microbiota, 3 different doses of XOS were tested at 1.0 g/day, 1.5 g/day and 3.0 g/day. The in vitro model was run for 72 h, and at the start and subsequently every 24 h samples were taken and analysed for short-chain fatty acids (SCFA) and gut microbiota composition. SCFA were analysed using ion chromatography, whereas microbiota composition was analysed using sequencing of the V3-V4 region of the 16S rRNA gene. XOS showed a similar SCFA production per gram of substrate as the control medium, including butyrate, which is considered to be important for gut health. In both sets of experiments XOS showed a consistent dose-dependent increase in abundance over time of the genus Bifidobacterium, and within that of the species B. adolescentis and an unidentified species (labelled ‘sp.1’). The results show the potential prebiotic effect of XOS from sugarcane, by its capacity to generate butyrate and increase the health-beneficial bifidobacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.