Background: Clozapine is the antipsychotic of choice for treatment-resistant schizophrenia and has minimal risk for extrapyramidal symptoms. Therapeutic benefits, however, are accompanied by a myriad of cardiometabolic side-effects. The specific reasons for clozapine's high propensity to cause adverse cardiometabolic events remain unknown, but it is believed that autonomic dysfunction may play a role in many of these.Objective: This systematic review summarizes the literature on autonomic dysfunction and related cardiovascular side effects associated with clozapine treatment.Method: A search of the EMBASE, MEDLINE, and EBM Cochrane databases was conducted using the search terms antipsychotic agents, antipsychotic drug*, antipsychotic*, schizophrenia, schizophren*, psychos*, psychotic*, mental ill*, mental disorder*, neuroleptic*, cardiovascular*, cardiovascular diseases, clozapine*, clozaril*, autonomic*, sympathetic*, catecholamine*, norepinephrine, noradrenaline, epinephrine, adrenaline.Results: The search yielded 37 studies that were reviewed, of which only 16 studies have used interventions to manage cardiovascular side effects. Side effects reported in the studies include myocarditis, orthostatic hypotension and tachycardia. These were attributed to sympathetic hyperactivity, decreased vagal contribution, blockade of cholinergic and adrenergic receptors, reduced heart rate variability and elevated catecholamines with clozapine use. Autonomic neuropathy was identified by monitoring blood pressure and heart rate changes in response to stimuli and by spectral analysis of heart rate variability. Metoprolol, lorazepam, atenolol, propranolol, amlodipine, vasopressin and norepinephrine infusion were used to treat tachycardia and fluctuations in blood pressure, yet results were limited to case reports.Conclusion: The results indicate there is a lack of clinical studies investigating autonomic dysfunction and a limited use of interventions to manage cardiovascular side effects associated with clozapine. As there is often no alternative treatment for refractory schizophrenia, the current review highlights the need for better designed studies, use of autonomic tests for prevention of cardiovascular disease and development of novel interventions for clozapine-induced side effects.
Over the past two decades, there has been a notable rise in the use of antipsychotic drugs, as they are used to treat an increasing number of neuropsychiatric disorders. This rise has been led predominantly by greater use of the second generation antipsychotic (SGA) drugs, which have a low incidence of neurological side-effects. However, many SGAs cause metabolic dysregulation, including glucose intolerance and insulin resistance, thus increasing the risk of cardiometabolic disorders. The metabolic effects of the novel SGA lurasidone, which was approved by the Food and Drug Administration in 2010, remain largely unknown. As rodent models accurately predict the metabolic effects of SGAs in humans, the aim of the present study was to use sophisticated animal models of glucose tolerance and insulin resistance to measure the metabolic effects of lurasidone. In parallel, we compared the SGA olanzapine, which has established metabolic effects. Adult female rats were treated with vehicle, lurasidone (0.2, 0.8 or 2.0 mg/kg, s.c.) or olanzapine (10.0 mg/kg, s.c.) and subjected to the glucose tolerance test (GTT). Separate groups of rats were treated with vehicle, lurasidone (0.2, 0.8 or 2.0 mg/kg, s.c.) or olanzapine (1.5 and 15 mg/kg, s.c.) and tested for insulin resistance with the hyperinsulinemic-euglycemic clamp (HIEC). Compared to vehicle treated animals, lurasidone caused mild glucose intolerance in the GTT with a single dose, but there was no effect on insulin resistance in the GTT, measured by HOMA-IR. The HIEC also confirmed no effect of lurasidone on insulin resistance. In contrast, olanzapine demonstrated dose-dependent and potent glucose intolerance, and insulin resistance in both tests. Thus, in preclinical models, lurasidone demonstrates mild metabolic liability compared to existing SGAs such as olanzapine. However, confirmation of these effects in humans with equivalent tests should be confirmed.
The second generation antipsychotic drug clozapine represents the most effective pharmacotherapy for treatment-resistant psychosis. It is also associated with low rates of extrapyramidal symptoms and hyperprolactinemia compared to other antipsychotic drugs. However, clozapine tends to be underutilized in clinical practice due to a number of disabling and serious side-effects. These are characterized by a constellation of metabolic side-effects which include dysregulation of glucose, insulin, plasma lipids and body fat. Many patients treated with clozapine go on to develop metabolic syndrome at a higher rate than the general population, which predisposes them for Type 2 diabetes mellitus and cardiovascular disease. Treatments for the metabolic side-effects of clozapine vary in their efficacy. There is also a lack of knowledge about the underlying physiology of how clozapine exerts its metabolic effects in humans. In the current review, we focus on key studies which describe how clozapine affects each of the main symptoms of the metabolic syndrome, and cover some of the treatment options. The clinical data are then discussed in the context of preclinical studies that have been conducted to identify the key biological substrates involved, in order to provide a better integrated overview. Suggestions are provided about key areas for future research to better understand how clozapine causes metabolic dysregulation.
There are no standardized methods for monitoring appetite in free-living populations. Fifteen participants tested a computer-automated text-messaging system designed to track hunger ratings over seven days. Participants were sent text-messages (SMS) hourly and instructed to reply during waking hours with their current hunger rating. Of 168 SMS, 0.6-7.1% were undelivered, varying by mobile service provider, On average 12 SMS responses were received daily with minor variations by observation day or day of the week. Compliance was over 74% and 93% of the ratings were received within 30-minutes. Automated text-messaging is a feasible method to monitor appetite ratings in this population.
Antipsychotic drugs represent the most effective treatment for chronic psychotic disorders. The newer second generation drugs offer the advantage of fewer neurological side-effects compared to prior drugs, but many cause serious metabolic side-effects. The underlying physiology of these side-effects is not well-understood, but evidence exists to indicate that the sympathetic nervous system may play an important role. In order to examine this possibility further, we treated separate groups of adult female rats acutely with either the first generation antipsychotic drug haloperidol (0.1 or 1 mg/kg) or the second generation drugs risperidone (0.25 or 2.5 mg/kg), clozapine (2 or 20 mg/kg), olanzapine (3 or 15 mg/kg) or vehicle by intraperitoneal injection. Blood samples were collected prior to drug and then 30, 60, 120, and 180 mins after treatment. Plasma samples were assayed by HPLC-ED for levels of norepinephrine, epinephrine, and dopamine. Results confirmed that all antipsychotics increased peripheral catecholamines, although this was drug and dose dependent. For norepinephrine, haloperidol caused the smallest maximum increase (+158%], followed by risperidone (+793%), olanzapine (+952%) and clozapine (+1,684%). A similar pattern was observed for increases in epinephrine levels by haloperidol (+143%], olanzapine (+529%), risperidone (+617%) then clozapine (+806%). Dopamine levels increased moderately with olanzapine [+174%], risperidone [+271%], and clozapine [+430%]. Interestingly, levels of the catecholamines did not correlate strongly with each other prior to treatment at baseline, but were increasingly correlated after treatment as time proceeded. The results demonstrate antipsychotics can potently regulate peripheral catecholamines, in a manner consistent with their metabolic liability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.