Tens of millions of contrast enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Several series of selectively deuterated 2,2'-bipyridine-based cryptates with the near-IR emissive lanthanoids Pr, Nd, Er, and Yb are reported. The structural and luminescence properties of these complexes have been comprehensively investigated. A combination of experimental techniques (X-ray crystallography, lanthanoid-induced NMR shift analysis, luminescence, vibrational near-IR absorption) and theoretical concepts has been applied with a focus on nonradiative deactivation through multiphonon relaxation of lanthanoid excited states by aromatic, high-energy C-(H/D) oscillators. It is shown that the characteristics for the overtones of these vibrational modes deviate substantially from harmonic oscillators and that anharmonicity within a local-mode Morse model is an essential parameter for any accurate description. The spectral overlap integrals (SOIs) of lanthanoid electronic states with aromatic C-(H/D) overtones are evaluated quantitatively for different lanthanoid/oscillator combinations and the implications for luminescence enhancement through deuteration is discussed. Simple Gaussian functions are proposed as appropriate mathematical forms for the empirical approximation of SOIs.
Two series of selectively deuterated cryptates with the lanthanoids Yb and Nd have been synthesized, and the luminescence lifetimes for the corresponding near-IR emission bands have been measured. Global fitting of these lifetime data combined with structural analysis allows for the accurate quantification of the contributions of individual C-H oscillators groups in the ligand to the nonradiative deactivation rates of the emissive lanthanoid states.
A series of selectively deuterated praseodymium cryptates has been synthesized. Their luminescence lifetimes in solution range from 150 to 595 ns for the (1)D(2) → (3)F(4) transition. Global fitting of the nonradiative deactivation rate differences of the isotopologic C-(H/D) oscillators revealed that aromatic C-D overtones anomalously quench the luminescence more than C-H vibrations. This is explained by the dominance of Franck-Condon overlap factors that greatly favor C-D oscillators, which are in almost ideal resonance with the relevant energy gap (1)D(2)-(1)G(4) of praseodymium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.