Egocentric, or first-person vision which became popular in recent years with an emerge in wearable technology, is different than exocentric (third-person) vision in some distinguishable ways, one of which being that the camera wearer is generally not visible in the video frames. Recent work has been done on action and object recognition in egocentric videos, as well as work on biometric extraction from first-person videos. Height estimation can be a useful feature for both soft-biometrics and object tracking. Here, we propose a method of estimating the height of an egocentric camera without any calibration or reference points. We used both traditional computer vision approaches and deep learning in order to determine the visual cues that results in best height estimation. Here, we introduce a framework inspired by two stream networks comprising of two Convolutional Neural Networks, one based on spatial information, and one based on information given by optical flow in a frame. Given an egocentric video as an input to the framework, our model yields a height estimate as an output. We also incorporate late fusion to learn a combination of temporal and spatial cues. Comparing our model with other methods we used as baselines, we achieve height estimates for videos with a Mean Average Error of 14.04 cm over a range of 103 cm of data, and classification accuracy for relative height (tall, medium or short) up to 93.75% where chance level is 33%.
Decision-making systems increasingly orchestrate our world: how to intervene on the algorithmic components to build fair and equitable systems is therefore a question of utmost importance; one that is substantially complicated by the context-dependent nature of fairness and discrimination. Modern systems incorporate machinelearned predictions in broader decision-making pipelines, implicating concerns like constrained allocation and strategic behavior that are typically thought of as mechanism design problems. Although both machine learning and mechanism design have individually developed frameworks for addressing issues of fairness and equity, in some complex decision-making systems, neither framework is individually sufficient. In this paper, we develop the position that building fair decision-making systems requires overcoming these limitations which, we argue, are inherent to the individual frameworks of machine learning and mechanism design. Our ultimate objective is to build an encompassing framework that cohesively bridges the individual frameworks. We begin to lay the ground work towards achieving this goal by comparing the perspective each individual discipline takes on fair decision-making, teasing out the lessons each field has taught and can teach the other, and highlighting application domains that require a strong collaboration between these disciplines.
Given a prediction task, understanding when one can and cannot design a consistent convex surrogate loss, particularly a low-dimensional one, is an important and active area of machine learning research. The prediction task may be given as a target loss, as in classification and structured prediction, or simply as a (conditional) statistic of the data, as in risk measure estimation. These two scenarios typically involve different techniques for designing and analyzing surrogate losses. We unify these settings using tools from property elicitation, and give a general lower bound on prediction dimension. Our lower bound tightens existing results in the case of discrete predictions, showing that previous calibration-based bounds can largely be recovered via property elicitation. For continuous estimation, our lower bound resolves on open problem on estimating measures of risk and uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.