BackgroundThoracic ultrasonography (TUS) is a specific and relatively sensitive method to diagnose bronchopneumonia (BP) in dairy calves. Unfortunately, as it requires specific training and equipment, veterinarians typically base their diagnosis on thoracic auscultation (AUSC), which is rapid and easy to perform.Hypothesis/ObjectivesWe hypothesized that the use of TUS, in addition to AUSC, can significantly increase accuracy of BP diagnosis. Therefore, the objectives were to (i) determine the incremental value of TUS over AUSC for diagnosis of BP in preweaned dairy calves and (ii) assess diagnostic accuracy of AUSC.AnimalsTwo hundred and nine dairy calves (<1 month of age) were enrolled in this cross‐sectional study.MethodsProspective cross‐sectional study. All calves from a veal calves unit were examined (independent operators) using the Wisconsin Calf Respiratory Scoring Criteria (CRSC), AUSC, and TUS. A Bayesian latent class approach was used to estimate the incremental value of AUSC over TUS (integrated discrimination improvement [IDI]) and the diagnostic accuracy of AUSC.ResultsAbnormal CRSC, AUSC, and TUS were recorded in 3.3, 53.1, and 23.9% of calves, respectively. AUSC was sensitive (72.9%; 95% Bayesian credible interval [BCI]: 50.1–96.4%), but not specific (53.3%; 95% BCI: 43.3–64.0%) to diagnose BP. Compared to AUSC, TUS was more specific (92.9%; 95% BCI: 86.5–97.1%), but had similar sensitivity (76.5%; 95% BCI: 60.2–88.8%). The incremental value of TUS over AUSC was high (IDI = 43.7%; 5% BCI: 22.0–63.0%) significantly improving proportions of sick and healthy calves appropriately classified.Conclusions and Clinical ImportanceThe use of TUS over AUSC significantly improved accuracy of BP diagnosis in dairy calves.
Physiological changes associated with thermoregulation can influence the kinetics of chemicals in the human body, such as alveolar ventilation (VA) and redistribution of blood flow to organs. In this study, the influence of heat stress on various physiological parameters was evaluated in nine male volunteers during sessions of exposure to wet blub globe temperatures (WBGT) of 21, 25 and 30°C for four hours. Skin and core temperatures and more than twenty cardiopulmonary parameters were measured. Liver, kidneys, brain, skin and muscles blood flows were also determined based on published measurements. Results show that most subjects (8 out of 9) have been affected by the inhalation of hot and dry air at the WBGT of 30°C. High respiratory rates, superficial tidal volumes and low VA values were notably observed. The skin blood flow has increased by 2.16-fold, whereas the renal blood flow and liver blood flow have decreased by about by 11 and 18% respectively. A complete set of key cardiopulmonary parameters in healthy male adults before and during heat stress was generated for use in PBPK modeling. A toxicokinetic studies are ongoing to evaluate the impact of heat stress on the absorption, biotransformation and excretion rates of volatile xenobiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.