Background
The timing and mechanisms of asthma inception remain imprecisely defined. Although epigenetic mechanisms likely contribute to asthma pathogenesis, little is known about their role in asthma inception.
Objective
To assess whether the trajectory to asthma begins already at birth and epigenetic mechanisms, specifically DNA methylation, contribute to asthma inception.
Methods
We used Methylated CpG Island Recovery Assay (MIRA)-chip to survey DNA methylation in cord blood mononuclear cells (CBMC) from 36 children (18 non-asthmatic, 18 asthmatic by age 9) from the Infant Immune Study (IIS), an unselected birth cohort closely monitored for asthma for a decade. SMAD3 methylation in IIS (n=60) and in two replication cohorts (The Manchester Asthma and Allergy Study, n=30, and the Childhood Origins of ASThma Study, n=28) was analyzed by bisulfite sequencing or Illumina 450K arrays. CBMC-derived IL-1β was measured by ELISA.
Results
Neonatal immune cells harbored 589 differentially methylated regions (DMRs) that distinguished IIS children who did and did not develop asthma by age 9. In all three cohorts, methylation in SMAD3, the most connected node within the network of asthma-associated DMRs, was selectively increased in asthmatic children of asthmatic mothers and was associated with childhood asthma risk. Moreover, SMAD3 methylation in IIS neonates with maternal asthma was strongly and positively associated with neonatal production of IL-1β, an innate inflammatory mediator.
Conclusions
The trajectory to childhood asthma begins at birth and involves epigenetic modifications in immunoregulatory and pro-inflammatory pathways. Maternal asthma influences epigenetic mechanisms that contribute to the inception of this trajectory.
These results suggest that a single exposure of IL-13 may selectively induce long-lasting DNA methylation changes in asthmatic airways that alter specific AEC pathways and contribute to asthma phenotypes.
BackgroundThe changes that occur during puberty have been implicated in susceptibility to a wide range of diseases later in life, many of which are characterized by sex-specific differences in prevalence. Both genetic and environmental factors have been associated with the onset or delay of puberty, and recent evidence has suggested a role for epigenetic changes in the initiation of puberty as well.ObjectiveTo identify global DNA methylation changes that arise across the window of puberty in girls and boys.MethodsGenome-wide DNA methylation levels were measured using the Infinium 450K array. We focused our studies on peripheral blood mononuclear cells (PBMCs) from 30 girls and 25 boys pre- and post-puberty (8 and 14 years, respectively), in whom puberty status was confirmed by Tanner staging.ResultsOur study revealed 347 differentially methylated probes (DMPs) in females and 50 DMPs in males between the ages of 8 and 14 years (FDR 5%). The female DMPs were in or near 312 unique genes, which were over-represented for having high affinity estrogen response elements (permutation P < 2.0 × 10−6), suggesting that some of the effects of estrogen signaling in puberty are modified through epigenetic mechanisms. Ingenuity Pathway Analysis (IPA) of the 312 genes near female puberty DMPs revealed significant networks enriched for immune and inflammatory responses as well as reproductive hormone signaling. Finally, analysis of gene expression in the female PBMCs collected at 14 years revealed modules of correlated transcripts that were enriched for immune and reproductive system functions, and include genes that are responsive to estrogen and androgen receptor signaling. The male DMPs were in or near 48 unique genes, which were enriched for adrenaline and noradrenaline biosynthesis (Enrichr P = 0.021), with no significant networks identified. Additionally, no modules were identified using post-puberty gene expression levels in males.ConclusionEpigenetic changes spanning the window of puberty in females may be responsive to or modify hormonal changes that occur during this time and potentially contribute to sex-specific differences in immune-mediated and endocrine diseases later in life.Electronic supplementary materialThe online version of this article (10.1186/s13148-018-0491-2) contains supplementary material, which is available to authorized users.
To investigate the genomic architecture underlying the quintessential adaptive phenotype, antifreeze glycoprotein (AFGP) that enables Antarctic notothenioid survival in the frigid Southern Ocean, we isolated the AFGP genomic locus from a bacterial artificial chromosome library for Dissostichus mawsoni. Through extensive shotgun sequencing of pertinent clones and sequence assembly verifications, we reconstructed the highly repetitive AFGP genomic locus. The locus comprises two haplotypes of different lengths (363.6 kbp and 467.4 kbp) containing tandem AFGP, two TLP (trypsinogen-like protease), and surprisingly three chimeric AFGP/TLP, one of which was previously hypothesized to be a TLP-to-AFGP evolutionary intermediate. The ~100 kbp haplotype length variation results from different AFGP copy number, suggesting substantial dynamism existed in the evolutionary history of the AFGP gene family. This study provided the data for fine resolution sequence analyses that would yield insight into the molecular mechanisms of notothenioid AFGP gene family evolution driven by Southern Ocean glaciation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.