To investigate the genomic architecture underlying the quintessential adaptive phenotype, antifreeze glycoprotein (AFGP) that enables Antarctic notothenioid survival in the frigid Southern Ocean, we isolated the AFGP genomic locus from a bacterial artificial chromosome library for Dissostichus mawsoni. Through extensive shotgun sequencing of pertinent clones and sequence assembly verifications, we reconstructed the highly repetitive AFGP genomic locus. The locus comprises two haplotypes of different lengths (363.6 kbp and 467.4 kbp) containing tandem AFGP, two TLP (trypsinogen-like protease), and surprisingly three chimeric AFGP/TLP, one of which was previously hypothesized to be a TLP-to-AFGP evolutionary intermediate. The ~100 kbp haplotype length variation results from different AFGP copy number, suggesting substantial dynamism existed in the evolutionary history of the AFGP gene family. This study provided the data for fine resolution sequence analyses that would yield insight into the molecular mechanisms of notothenioid AFGP gene family evolution driven by Southern Ocean glaciation.
A survey of Antarctic toothfish (Dissostichus mawsoni) was conducted in the northern Ross Sea region during the winter of 2016 to document the timing and location of spawning activity, to collect biological information about reproductive status during the spawning season and to look for temporal signals in biological data from D. mawsoni that may indicate a spawning migration of mature toothfish from the continental slope region to the northern Ross Sea region. The 58 day survey showed that spawning of D. mawsoni began on some seamounts by early July. No changes were detected between winter and summer in length, age, sex ratio or condition factor distributions for D. mawsoni in the northern Ross Sea as hypothesized following a spawning migration from the slope to the northern Ross Sea region. These results suggest that the distribution of D. mawsoni in the Ross Sea is mainly accomplished through ontogenetic migration and not annual return spawning migrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.