Our study evaluates the efficacy of a “green” (i.e., sustainable, recyclable, and reusable) technology to treat waste waters produced by Canada’s oil sands industry. We examined the ability of a novel advanced oxidative method—ultra-violet photocatalysis over titanium dioxide (TiO2)-coated microparticles—to reduce the toxicity of naphthenic acid fraction components (NAFC) to early life stages of the fathead minnow ( Pimephales promelas). Lengthening the duration of photocatalysis resulted in greater removal of NAFC from bioassay exposure waters; low- and high-intensity treatments reduced NAFC concentrations to about 20 and 3 mg/L (by Fourier-transformed infrared spectroscopy, FTIR), respectively. Treatments reduced the acute lethality of NAFC to fathead minnows by over half after low-intensity treatment and three-fold after high-intensity treatment. However, incomplete degradation in low-intensity treatments increased the incidence of chronic toxicity relative to untreated NAFC solutions and cardiovascular abnormalities were common even with >80% of NAFC degraded. Our findings demonstrate that photocatalysis over TiO2 microparticles is a promising method for mitigating the toxicity of oil sands process-affected water-derived NAFC to fish native to the oil sands region, but the intensity of the photocatalytic treatment needs to be considered carefully to ensure adequate mineralization of toxic constituents.
Our study evaluated whether exposure to naphthenic acid fraction compounds (NAFCs) extracted from oil sands process-affected waters (OSPW) has adverse effects on fish embryos that persist into later life. We exposed fathead minnow (Pimephales promelas) embryos to concentrations of NAFCs found in OSPW (2.5-54 mg/L) for 7 days (1 day postfertilization to hatch), then raised surviving larvae in outdoor mesocosms of uncontaminated lake water for 1 month. Embryos exposed to NAFCs were more likely to exhibit malformations (by up to 8-fold) and had slower heart rates (by up to 24%) compared to controls. Fish raised in uncontaminated lake water following exposure to NAFCs as embryos, were 2.5-fold less likely to survive during the larval stage than control fish. These fish also showed up to a 45% decrease in swim activity and a 36% increase in swim burst events during behavioral tests relative to controls. We conclude that exposure to NAFCs during the embryonic stage can have lasting effects on fish survival, physiology, and behavior that persist at least through the larval stage. These findings of delayed mortalities and persistent sublethal effects of embryonic NAFC exposure are relevant to informing the development of regulations on treated OSPW releases from mining operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.