populations from a copper contaminated site and an uncontaminated site, and in the 54 grapevine rootstock "41B", investigating the effects of copper (0-23 mmol l -1 ) on 55 growth, photosynthetic performance and mineral nutrient content. The highest Cu 56 treatment induced nutrient imbalances and inhibited photosynthetic function, causing a 57 drastic reduction in growth in the three study plants. Effective concentration was higher 58 than 23 mmol l -1 Cu in the wild grapevines and around 9 mmol l -1 in the "41B" plants. 59The wild grapevine accessions studied controlled root Cu concentration more efficiently 60 than is the case with the "41B" rootstock and must be considered Cu-tolerant.
Spartina densiflora Brongn. is found in coastal marshes of southwest Spain, growing over sediments containing 100-4800 ppm Zn. A glasshouse experiment was designed to investigate the effect of Zn from 0 to 100 mmol.l(-1) on the growth and photosynthetic apparatus of S. densiflora, by measuring relative growth rate, leaf elongation rate, number of tillers, height of tillers, chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. We also determined total ash, Zn, calcium, magnesium and phosphorus concentrations, and the C/N ratio. At 100 mmol.l(-1) Zn, S. densiflora showed a 48% biomass reduction after 1 month of treatment. Long-term effects of Zn on growth of S. densiflora consisted mainly of variations in net photosynthesis. Modification of the Zn/Mg ratio was linked to a strong decrease in RuBP carboxylase (Zn was favoured in local competition with Mg, so that the affinity of RuBisCO for CO(2) decreased), oxygenase activity of RuBisCO acting as a substitute for the photosynthetic function. Also, Zn had a marked overall effect on the photochemical (PSII) apparatus and the synthesis of photosynthetic pigments. However, the results indicate that S. densiflora is capable of tolerating very high and continued exposure to Zn, as this species lowers the translocation of Zn from the nutrient solution to roots and controls Zn ion transport into leaves. Therefore, S. densiflora could be useful in the phytostabilization of soils.
The seeds most likely to germinate at high salinity in the Mediterranean summer (brown ones) retain a requirement for higher salinity as seedlings that might be of adaptive value. On the other hand, black seeds, which are likely to delay germination until lower salinity prevails, produce seedlings that are less sensitive to salinity. It is not clear why performance at low salinity, later in the life cycle, might have been sacrificed by the brown seeds, to achieve higher fitness at the germination stage under high salinity. Analyses of adaptive syndromes associated with seed dimorphism may need to take account of differences over the entire life cycle, rather than just at the germination stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.