This paper deals with the spectrum of a linear, weighted eigenvalue problem associated with a singular, second order, elliptic operator in a bounded domain, with Dirichlet boundary data. In particular, we analyze the existence and uniqueness of principal eigenvalues. As an application, we extend the usual concepts of linearization and Frechet derivability, and the method of sub and supersolutions to some semilinear, singular elliptic problems. 2002 Éditions scientifiques et médicales Elsevier SAS 1991 MSC: 35P05; 35J65 RÉSUMÉ.-On étudie le spectre d'un problème à valeurs propres avec poids associé avec un opérateur elliptique singulier d'ordre deux sur un domaine borné avec condition au bord de Dirichlet. En particulier, on considère l'existence et l'unicité des valeurs propres principales. On donne comme application des extensions des notions de linéarisation et différentielle de Fréchet et de la méthode de sous et sursolutions à quelques problèmes elliptiques semilinéaires singuliers. 2002 Éditions scientifiques et médicales Elsevier SAS ✩ This work was supported by DGI under Grants BFM2001-2363 and REN2000-0766 and by the European Network IHP-RTN-002.
This paper deals with singular semilinear elliptic equations in bounded domains with Dirichlet boundary data. The elliptic operator is a second-order operator not necessarily in divergence form. We consider existence, uniqueness and linearized stability of positive solutions for a series of nonlinear eigenvalue problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.