The pathways of melanization and sclerotization of the cuticle in insects are carried out by the action of laccases on dopamine and related compounds. In this work, the laccase action of Trametes versicolor (TvL) on catecholamines and related compounds has been kinetically characterized. Among them, dopamine, L-dopa, Lepinephrine, L-norepinephrine, L-isoprenaline L-α-methyldopa and L-dopa methylester. A chronometric method has been used for this characterization, with the help of a small amount of ascorbic acid. The use of TvL has allowed docking studies of these molecules to be carried out at the active site of this enzyme. The hydrogen bridge interaction between the hydroxyl oxygen at C-4 with His-458, and with the acid group of Asp-206, would make it possible to transfer the electron to the copper centre of the enzyme. The presence of an isopropyl group bound to nitrogen (isoprenaline) makes it especially difficult to catalyse. The formation of the ester (L-dopa methyl ester) practically does not affect catalysis. The addition of a methyl group (α-methyl dopa) increases the rate but decreases the affinity for catalysis. L-epinephrine and Lnorepinephrine have a similar affinity to isoprenaline, but faster catalysis, probably due to the greater nucleophilic power of their phenolic hydroxyl.
The oxidation of oleuropein and 3‐hydroxytyrosol by oxidases laccase, tyrosinase, and peroxidase has been studied. The use of a spectrophotometric method and another spectrophotometric chronometric method has made it possible to determine the kinetic parameters Vmax and KM for each enzyme. The highest binding affinity was shown by laccase. The antioxidant capacities of these two molecules have been characterized, finding a very similar primary antioxidant capacity between them. Docking studies revealed the optimal binding position, which was the same for the two molecules and was a catalytically active position.
Practical applications
One of the biggest environmental problems in the food industry comes from olive oil mill wastewater with a quantity of approximately 30 million tons per year worldwide. In addition, olive pomace, the solid residue obtained from the olive oil production, is rich in hydroxytyrosol and oleuropein and the action of enzymatic oxidases can give rise to products in their reactions that can lead to polymerization. This polymerization can have beneficial effects because it can increase the antioxidant capacity with potential application on new functional foods or as feed ingredients. Tyrosinase, peroxidase, and laccase are the enzymes degrading these important polyphenols. The application of a spectrophotometric method for laccase and a chronometric method, for tyrosinase and peroxidase, allowed us to obtain the kinetic information of their reactions on hydroxytyrosol and oleuropein. The kinetic information obtained could advance in the understanding of the mechanism of these important industrial enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.