Background Blastocystis is a stramenopile of worldwide significance due to its capacity to colonize several hosts. Based on its high level of genetic diversity, Blastocystis is classified into global ribosomal subtypes (STs). The aim of this study was to conduct a summary of Blastocystis STs and depict their distribution throughout North and South America; we did this by assembling maps and identifying its most common 18S alleles based on diverse studies that had been reported all over the continent and whose Blastocystis -positive samples were obtained from numerous hosts. Results Thirty-nine articles relating to nine countries from the American continent were considered, revealing that ST1 (33.3%), ST2 (21.9%), ST3 (37.9%), ST4 (1.7%), ST5 (0.4%), ST6 (1.2%), ST7 (1%), ST8 (0.7%), ST9 (0.4%), ST12 (0.3%), Novel ST (1.1%) and Mixed STs (0.2%) occurred in humans. The STs in other animal hosts were ST1 (6.5%), ST2 (6.5%), ST3 (4.7%), ST4 (7.2%), ST5 (15.9%), ST6 (17.3%), ST7 (3.6%), ST8 (20.6%), ST10 (9%), ST14 (3.6%), ST17 (1.1%) and Novel ST (4%). The countries that presented the most abundant variety of studies reporting STs were the USA with 14 STs, Brazil with 9 STs and Colombia with 8 STs. Additionally, new variants had been described in the last few years, which have increased the prevalence of these subtypes in the countries studied, such as Novel ST (1.1%) and Mixed STs (0.2%) in humans and Novel ST (4%) in animals. Conclusions This summary updates the epidemiological situation on the distribution of Blastocystis STs in North and South America and will augment current knowledge on the prevalence and genetic diversity of this protozoan. Electronic supplementary material The online version of this article (10.1186/s13071-019-3641-2) contains supplementary material, which is available to authorized users.
We performed phylogenomic analysis of severe acute respiratory syndrome coronavirus‐2 from 88 infected individuals across different regions of Colombia. Eleven different lineages were detected, suggesting multiple introduction events. Pangolin lineages B.1 and B.1.5 were the most frequent, with B.1 being associated with prior travel to high‐risk areas.
Traditionally, there has been a frequent, yet incorrect assumption that phlebotomine vectors, animal reservoirs, and human hosts are susceptible to Leishmania infection by a single parasite species. However, current evidence supports that these new vector-parasite-reservoir associations lend vectors and reservoirs greater permissiveness to certain Leishmania species, thus promoting the appearance of coinfection events, particularly in disease-endemic regions.
Introduction Venezuela and Colombia both adopted measures of containment early in response to the COVID-19 pandemic. However, Venezuela's ongoing humanitarian crisis has decimated its health care system, and forced millions of Venezuelans to flee through its porous border with Colombia. The extensive shared border, and illegal cross-border transit through improvised trails between the two countries are major challenges for public health authorities. We report the first SARS-CoV-2 genomes from Venezuela, and present a snapshot of the SARS-CoV-2 epidemiologic landscape in the Colombian-Venezuelan border region. Methods We sequenced and assembled viral genomes from total RNA extracted from nasopharyngeal (NP) clinical specimens using a custom reference-based analysis pipeline. Three assemblies obtained were subjected to typing using the Phylogenetic Assignment of Named Global Outbreak LINeages ‘Pangolin’ tool. A total of 376 publicly available SARS-CoV-2 genomes from South America were obtained from the GISAID database to perform comparative genomic analyses. Additionally, the Wuhan-1 strain was used as reference. Results We found that two of the SARS-CoV-2 genomes from Venezuela belonged to the B1 lineage, and the third to the B.1.13 lineage. We observed a point mutation in the Spike protein gene (D614G substitution), previously reported to be associated with increased infectivity, in all three Venezuelan genomes. An additional three mutations (R203K/G204R substitution) were present in the nucleocapsid (N) gene of one Venezuelan genome. Conclusions Genomic sequencing demonstrates similarity between SARS-CoV-2 lineages from Venezuela and viruses collected from patients in bordering areas in Colombia and from Brazil, consistent with cross-border transit despite administrative measures including lockdowns. The presence of mutations associated with increased infectivity in the 3 Venezuelan genomes we report and Colombian SARS-CoV-2 genomes from neighboring borders areas may pose additional challenges for control of SARS-CoV-2 spread in the complex epidemiological landscape in Latin American countries. Public health authorities should carefully follow the progress of the pandemic and its impact on displaced populations within the region.
ObjectiveTo study the presence of Bartonella bacilliformis in ticks collected from two wild mammals in Madre de Dios, Peru.ResultsA total of 110 ticks were collected. Among the 43 Amblyomma spp. extracted from the 3 Tapirus terrestris only 3 were positive for B. bacilliformis. In addition, 12 out of the 67 Rhipicephalus (Boophilus) microplus obtained from the 3 Pecari tajacu were positive for B. bacilliformis. For the first time B. bacilliformis have been detected in arthropods other than Lutzomyia spp. Further studies are required to elucidate the possible role of ticks in the spread of South American Bartonellosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.