When cell membranes are treated with Triton X-100 or other detergents at 4 degrees C, a nonsolubilized fraction can often be recovered, the "detergent-resistant membranes", that is not found when detergent treatment takes place at 37 degrees C. Detergent-resistant membranes may be related in some cases to membrane "rafts". However, several basic aspects of the formation of detergent-resistant membranes are poorly understood. To answer some of the relevant questions, a simple bilayer composition that would mimic detergent-resistant membranes was required. The screening of multiple lipid compositions has shown that the binary mixture egg sphingomyelin/egg ceramide (SM/Cer) exhibits the required detergent resistance. In detergent-free membranes composed of different mixtures of SM and Cer (5-30 mol % of Cer) differential scanning calorimetry, fluorescence spectroscopy, and fluorescence microscopy experiments reveal the presence of discrete, Cer-enriched gel domains in a broad temperature range. In particular, at temperatures below SM phase transition ( approximately 40 degrees C) two gel (respectively Cer-rich and SM-rich) phases are directly observed using fluorescence microscopy. Although pure SM membranes are fully solubilized by Triton X-100 at room temperature, 5 mol % Cer is also enough to induce detergent resistance, even with a large detergent excess and lengthy equilibration times. Short-chain Cers do not give rise to detergent resistance. SM/Cer mixtures containing up to 30 mol % Cer become fully soluble at approximately 50 degrees C, i.e., well above the gel-fluid transition temperature of SM. The combined results of temperature-dependent solubilization and differential scanning calorimetry reveal that SM-rich domains are preferentially solubilized over the Cer-rich ones as soon as the former melt (i.e., at approximately 40 degrees C). As a consequence, at temperatures allowing only partial solubilization, the nonsolubilized residue is enriched in Cer with respect to the original bilayer composition. Fluorescence microscopy of giant unilamellar vesicles at room temperature clearly shows that SM-rich domains are preferentially solubilized over the Cer-rich ones and that the latter become more rigid and extensive as a consequence of the detergent effects. These observations may be relevant to the phenomena of sphingomyelinase-dependent signaling, generation of "raft platforms", and detergent-resistant cell membranes.
Fluorescence confocal microscopy and differential scanning calorimetry are used in combination to study the phase behaviour of bilayers composed of PC:PE:SM:Chol equimolecular mixtures, in the presence or absence of 10 mol% egg ceramide. In the absence of ceramide, separate liquid-ordered and liquid-disordered domains are observed in giant unilamellar vesicles. In the presence of ceramide, gel-like domains appear within the liquid-ordered regions. The melting properties of these gellike domains resemble those of SM:ceramide binary mixtures, suggesting Chol displacement by ceramide from SM:Chol-rich liquid-ordered regions. Thus three kinds of domains coexist within a single vesicle in the presence of ceramide: gel, liquid-ordered, and liquid-disordered. In contrast, when 10 mol% egg diacylglycerol is added instead of ceramide, homogeneous vesicles, consisting only of liquid-disordered bilayers, are observed.
The effects on dielaidoylphosphatidylethanolamine (DEPE) bilayers of ceramides containing different N-acyl chains have been studied by differential scanning calorimetry small angle x-ray diffraction and (31)P-NMR spectroscopy. N-palmitoyl (Cer16), N-hexanoyl (Cer6), and N-acetyl (Cer2) sphingosines have been used. Both the gel-fluid and the lamellar-inverted hexagonal transitions of DEPE have been examined in the presence of the various ceramides in the 0-25 mol % concentration range. Pure hydrated ceramides exhibit cooperative endothermic order-disorder transitions at 93 degrees C (Cer16), 60 degrees C (Cer6), and 54 degrees C (Cer2). In DEPE bilayers, Cer16 does not mix with the phospholipid in the gel phase, giving rise to high-melting ceramide-rich domains. Cer16 favors the lamellar-hexagonal transition of DEPE, decreasing the transition temperature. Cer2, on the other hand, is soluble in the gel phase of DEPE, decreasing the gel-fluid and increasing the lamellar-hexagonal transition temperatures, thus effectively stabilizing the lamellar fluid phase. In addition, Cer2 was peculiar in that no equilibrium could be reached for the Cer2-DEPE mixture above 60 degrees C, the lamellar-hexagonal transition shifting with time to temperatures beyond the instrumental range. The properties of Cer6 are intermediate between those of the other two, this ceramide decreasing both the gel-fluid and lamellar-hexagonal transition temperatures. Temperature-composition diagrams have been constructed for the mixtures of DEPE with each of the three ceramides. The different behavior of the long- and short-chain ceramides can be rationalized in terms of their different molecular geometries, Cer16 favoring negative curvature in the monolayers, thus inverted phases, and the opposite being true of the micelle-forming Cer2. These differences may be at the origin of the different physiological effects that are sometimes observed for the long- and short-chain ceramides.
Lipid lateral segregation into specific domains in cellular membranes is associated with cell signaling and metabolic regulation. This phenomenon partially arises as a consequence of the very distinct bilayer-associated lipid physico-chemical properties that give rise to defined phase states at a given temperature. Until now lamellar gel (Lβ) phases have been described in detail in single or two-lipid systems. Using x-ray scattering, differential scanning calorimetry, confocal fluorescence microscopy, and atomic force microscopy, we have characterized phases of ternary lipid compositions in the presence of saturated phospholipids, cholesterol, and palmitoyl ceramide mixtures. These phases stabilized by direct cholesterol-ceramide interaction can exist either with palmitoyl sphingomyelin or with dipalmitoyl phosphatidylcholine and present intermediate properties between raft-associated phospholipid-cholesterol liquid-ordered and phospholipid-ceramide Lβ phases. The present data provide novel, to our knowledge, evidence of a chemically defined, multicomponent lipid system that could cooperate in building heterogeneous segregated platforms in cell membranes.
Sphingosine, at 5-15 mol % total lipids, remarkably increases the permeability to aqueous solutes of liposomal and erythrocyte ghost membranes. The increased permeability cannot be interpreted in terms of leakage occurring at the early stages of a putative membrane solubilization by sphingosine, nor is it due to a sphingosine-induced generation of nonlamellar structures, or flip-flop lipid movement. Instead, sphingosine stabilizes (rigidifies) gel domains in membranes, raising their melting temperatures and increasing the transition cooperativity. Structural defects originating during the lateral phase separation of the "more rigid" and "less rigid" domains are likely sites for the leakage of aqueous solutes to the extravesicular medium. The presence of coexisting domains in the plasma membrane makes it a target for sphingosine permeabilization. The sphingosine-induced increase in rigidity and breakdown of the plasma membrane permeability barrier could be responsible for some of the physiological effects of sphingosine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.