Land subsidence associated with overexploitation of aquifers is a hazard that commonly affects large areas worldwide. The Lorca area, located in southeast Spain, has undergone one of the highest subsidence rates in Europe as a direct consequence of long-term aquifer exploitation. Previous studies carried out on the region assumed that the ground deformation retrieved from satellite radar interferometry corresponds only to vertical displacement. Here we report, for the first time, the two- and three-dimensional displacement field over the study area using synthetic aperture radar (SAR) data from Sentinel-1A images and Global Navigation Satellite System (GNSS) observations. By modeling this displacement, we provide new insights on the spatial and temporal evolution of the subsidence processes and on the main governing mechanisms. Additionally, we also demonstrate the importance of knowing both the vertical and horizontal components of the displacement to properly characterize similar hazards. Based on these results, we propose some general guidelines for the sustainable management and monitoring of land subsidence related to anthropogenic activities.
In this work a parametric multi-sensor Bayesian data fusion approach and a Support Vector Machine (SVM) are used for a Change Detection problem. For this purpose two sets of SPOT5-PAN images have been used, which are in turn used for Change Detection Indices (CDIs) calculation. For minimizing radiometric differences, a methodology based on zonal “invariant features” is suggested. The choice of one or the other CDI for a change detection process is a subjective task as each CDI is probably more or less sensitive to certain types of changes. Likewise, this idea might be employed to create and improve a “change map”, which can be accomplished by means of the CDI’s informational content. For this purpose, information metrics such as the Shannon Entropy and “Specific Information” have been used to weight the changes and no-changes categories contained in a certain CDI and thus introduced in the Bayesian information fusion algorithm. Furthermore, the parameters of the probability density functions (pdf’s) that best fit the involved categories have also been estimated. Conversely, these considerations are not necessary for mapping procedures based on the discriminant functions of a SVM. This work has confirmed the capabilities of probabilistic information fusion procedure under these circumstances.
Licencia/License: Salvo indicación contraria, todos los contenidos de la edición electrónica de Informes de la Construcción se distribuyen bajo una licencia de uso y distribución Creative Commons Reconocimiento no Comercial 3.0. España (cc-by-nc).Cómo citar este artículo/Citation: Velasco, J., Herrero, T., Prieto, J. (2014). Metodología de diseño, observación y cálculo de redes geodésicas exteriores para túneles de gran longitud. Informes de la Construcción, 66(533) RESUMENLa realización de túneles de gran longitud para ferrocarriles ha adquirido un gran auge en los últimos años. En España se han abordado proyectos de estas características, no existiendo para su ejecución una metodología completa y contrastada de actuación. Las características geométricas, de observación y de trabajo en túneles hace que las metodologías que se aplican en otros proyectos de ingeniería no sean aplicables por las siguientes causas: separación de las redes exteriores e interiores de los túneles debido a la diferente naturaleza de los observables, geometría en el interior siempre desfavorable a los requerimientos de observación clásica, mala visibilidad dentro del túnel, aumento de errores conforme avanza la perforación, y movimientos propios del túnel durante su ejecución por la propia geodinámica activa. Los patrones de observación geodésica usados deben revisarse cuando se ejecutan túneles de gran longitud. Este trabajo establece una metodología para el diseño de redes exteriores.Palabras clave: Ferrocarriles; túneles; GNSS; geodesia; sistemas de referencia; redes geodésicas y topográficas. SUMMARY The realization of long railway tunnels has acquired a great interest in recent years. In Spain it is necessary to address projects of this nature, but ther is no corresponding methodological framework supporting them. The tunnel observational and working geometrical properties, make that former methodologies used may be unuseful in this case
Abstract-Light Detection and Ranging (LIDAR) provides high horizontal and vertical resolution of spatial data located in point cloud images, and is increasingly being used in a number of applications and disciplines, which have concentrated on the exploit and manipulation of the data using mainly its three dimensional nature. Bathymetric LIDAR systems and data are mainly focused to map depths in shallow and clear waters with a high degree of accuracy. Additionally, the backscattering produced by the different materials distributed over the bottom surface causes that the returned intensity signal contains important information about the reflection properties of these materials. Processing conveniently these values using a Simplified Radiative Transfer Model, allows the identification of different sea bottom types. This paper presents an original method for the classification of sea bottom by means of information processing extracted from the images generated through LIDAR data. The results are validated using a vector database containing benthic information derived by marine surveys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.