New experiments on COMPASS-D, DIII-D and JET have identified the critical scalings of error field sensitivity and harmonic content effects, enabling predictions of the requirements for larger devices such as ITER. Thresholds are lowest at low density, a regime proposed for H mode access on ITER. Results suggest a moderate error field sensitivity (δB/B~10-4) for ITER, comparable with the size of its intrinsic error, although there are uncertainties in scaling behaviour. Other studies on COMPASS-D and DIII-D show that sideband harmonics to the (2,1) component play an important role. Thus a correction system for ITER will be important, with flexibility to correct sidebands desirable, possibly assisted by beam rotation. Such a system has been designed and is capable of reducing multiple harmonic error levels to ~2×10-5 .
High fusion power experiments using DT mixtures in ELM-free H mode and optimized shear regimes in JET are reported. A fusion power of 16.1 MW has been produced in an ELM-free H mode at 4.2 MA/3.6 T. The transient value of the fusion amplification factor was 0.95±0.17, consistent with the high value of nDT(0)τEdiaTi(0) = 8.7 × 1020±20% m-3 s keV, and was maintained for about half an energy confinement time until excessive edge pressure gradients resulted in discharge termination by MHD instabilities. The ratio of DD to DT fusion powers (from separate but otherwise similar discharges) showed the expected factor of 210, validating DD projections of DT performance for similar pressure profiles and good plasma mixture control, which was achieved by loading the vessel walls with the appropriate DT mix. Magnetic fluctuation spectra showed no evidence of Alfvénic instabilities driven by alpha particles, in agreement with theoretical model calculations. Alpha particle heating has been unambiguously observed, its effect being separated successfully from possible isotope effects on energy confinement by varying the tritium concentration in otherwise similar discharges. The scan showed that there was no, or at most a very weak, isotope effect on the energy confinement time. The highest electron temperature was clearly correlated with the maximum alpha particle heating power and the optimum DT mixture; the maximum increase was 1.3±0.23 keV with 1.3 MW of alpha particle heating power, consistent with classical expectations for alpha particle confinement and heating. In the optimized shear regime, clear internal transport barriers were established for the first time in DT, with a power similar to that required in DD. The ion thermal conductivity in the plasma core approached neoclassical levels. Real time power control maintained the plasma core close to limits set by pressure gradient driven MHD instabilities, allowing 8.2 MW of DT fusion power with nDT(0)τEdiaTi(0) ≈ 1021 m-3 s keV, even though full optimization was not possible within the imposed neutron budget. In addition, quasi-steady-state discharges with simultaneous internal and edge transport barriers have been produced with high confinement and a fusion power of up to 7 MW; these double barrier discharges show a great potential for steady state operation. © 1999, Euratom
A record performance on JET has been obtained with shear optimization scenarios. A neutron yield of 5.6 × 10 16 s −1 in deuterium discharges, and a global energy confinement improvement above the ITER-89 L-mode scaling with H 2.5 in L-mode and H 3 in H-mode have been achieved. The tailoring of plasma current, density and heating power waveforms and current profile control with lower hybrid current drive and ICRF phasing have been essential. Internal energy, particle and momentum transport barriers develop spontaneously upon heating above a threshold power of about 15 MW with neutral beams and ICRH into a low-density target plasma, with a wide central region of slightly negative or flat magnetic shear with q > 1 everywhere. An additional H-mode transition can also raise the pressure in the region between internal and edge transport barriers. The ion heat conductivity falls to the neoclassical level in the improved core confinement region. Pressure profile control through power deposition feedback control makes it possible to work close to the marginal stability boundary for pressure-driven MHD modes. First experiments in deuterium/tritium plasmas, with up to 75% tritium target concentration, have established internal transport barriers already with heating powers at the lowest threshold of pure deuterium plasmas, resulting in a fusion power output of P fusion = 2 MW.
The main limitation to the performance of JET optimized shear (OS) discharges is due to MHD instabilities, mostly in the form of a disruptive limit. The structure of the MHD mode observed as a precursor to the disruption, as measured from SXR and ECE diagnostics, shows a global ideal MHD mode. The measured mode structure is in good agreement with the calculated mode structure of the pressure driven kink mode. The disruptions occur at relatively low normalized beta (1 < βN < 2), in good agreement with calculated ideal MHD stability limits for the n = 1 pressure driven kink mode. These low limits are mainly due to the extreme peaking factor of the pressure profiles. Other MHD instabilities observed in JET OS discharges include, usually benign, chirping modes. These modes, which occur in bursts during which the frequency changes, have the same mode structure as the disruption precursor but are driven unstable by fast particles.
Core confinement and the overall performance of the tokamak have been considerably enhanced with the combination of two improved confinement regimes. Internal transport barriers characteristic of the optimized shear regime and an edge transport barrier of the high confinement H mode regime have been superposed in the double barrier (DB) mode. In DT discharges the DB mode has resulted in a fusion gain Q a factor of 2 higher than in conventional sawtoothing steady state ELMy H mode plasmas. The DB mode has been routinely established in the new Gas Box divertor configuration on JET. Off-axis lower hybrid current drive and edge radiation cooling through impurity seeding have been used for current and pressure profile control. This has made it possible to increase the performance up to βN = 2.4 and H 89 = 2.7 and to extend flat-top phases up to a duration of three energy confinement times, approaching steady state conditions. Modelling studies of DB mode DT operation on JET predict a fusion power in the range 20-30 MW. In ITER transport code modelling, steady state operation with a fusion power output of 1.3 GW is obtained for advanced tokamak scenarios in the DB mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.