BackgroundAutologous platelet-rich plasma has attracted attention in various medical fields recently, including orthopedic, plastic, and dental surgeries and dermatology for its wound healing ability. Further, it has been used clinically in mesotherapy for skin rejuvenation.ObjectiveIn this study, the effects of activated platelet-rich plasma (aPRP) and activated platelet-poor plasma (aPPP) have been investigated on the remodelling of the extracellular matrix, a process that requires activation of dermal fibroblasts, which is essential for rejuvenation of aged skin.MethodsPlatelet-rich plasma (PRP) and platelet-poor plasma (PPP) were prepared using a double-spin method and then activated with thrombin and calcium chloride. The proliferative effects of aPRP and aPPP were measured by [3H]thymidine incorporation assay, and their effects on matrix protein synthesis were assessed by quantifying levels of procollagen type I carboxy-terminal peptide (PIP) by enzyme-linked immunosorbent assay (ELISA). The production of collagen and matrix metalloproteinases (MMP) was studied by Western blotting and reverse transcriptase-polymerase chain reaction.ResultsPlatelet numbers in PRP increased to 9.4-fold over baseline values. aPRP and aPPP both stimulated cell proliferation, with peak proliferation occurring in cells grown in 5% aPRP. Levels of PIP were highest in cells grown in the presence of 5% aPRP. Additionally, aPRP and aPPP increased the expression of type I collagen, MMP-1 protein, and mRNA in human dermal fibroblasts.ConclusionaPRP and aPPP promote tissue remodelling in aged skin and may be used as adjuvant treatment to lasers for skin rejuvenation in cosmetic dermatology.
Propionibacterium acne and sebaceous glands are considered to have an important role in the development of acne. Although information regarding the activation of innate immunity by P. acnes in the sebaceous gland is limited, different P. acnes phylotypes and a higher prevalence of follicular P. acnes macrocolonies/biofilms in sebaceous follicles of skin biopsies from acne compared with control skin and occasionally single P. acnes clusters in single sebaceous glands have been detected. In this study, we investigated whether P. acnes activates the inflammasome in human sebaceous glands in vivo and in vitro. We found that IL-1β expression was upregulated in sebaceous glands of acne lesions. After stimulation of human sebocytes with P. acnes, the activation of caspase-1 and secretion of IL-1β were enhanced significantly. Moreover, knocking down the expression of NLRP3 abolished P. acnes-induced IL-1β production in sebocytes. The activation of the NLRP3 inflammasome by P. acnes was dependent on protease activity and reactive oxygen species generation. Finally, we found that NALP3-deficient mice display an impaired inflammatory response to P. acnes. These results suggest that human sebocytes are important immunocompetent cells that induce the NLRP3 inflammasome, and that P. acnes-induced IL-1β activation in sebaceous glands may have a role in combating skin infections and in acne pathogenesis.
BackgroundAquaporins (AQPs) are a family of water transporting proteins present in many mammalian epithelial and endothelial cell types. Among the AQPs, AQP3 is known to be a water/glycerol transporter expressed in human skin.ObjectiveThe relationship between the expression level of AQP3 and transpidermal water loss (TEWL) in the lesional and peri-lesional skin of psoriasis-affected patients, and skin hydration in the lesional and peri-lesional skin of psoriasis patients, was investigated.MethodsThe expression of AQP3 in psoriasis-affected and healthy control skin was determined using immunohistochemical and immunofluroscence staining. TEWL and skin hydration were measured using a Tewameter® TM210 (Courage & Khazaka, Cologne, Germany) and a Corneometer® CM 820 (Courage & Khazaka), respectively.ResultsAQP3 was mainly expressed in the plasma membrane of stratum corneum and the stratum spinosum in normal epidermis. Unlike the normal epidermis, AQP3 showed decreased expression in the lesional and peri-lesional epidermis of psoriasis. TEWL was increased, and skin hydration was decreased, in the lesional and peri-lesional skin of psoriasis patients, compared with the healthy control sample.ConclusionAlthough various factors contribute to reduced skin hydration in the lesional and peri-lesional skin of psoriasis, AQP3 appears to be a key factor in the skin dehydration of psoriasis-affected skin.
Scleredema may occur secondarily to diabetes or independently. The course of scleredema is not known in either type. Twenty-one scleredema patients were included in this study (13 females, 8 males). The patients were divided into two groups according to the presence or absence of diabetes. In the group (11 patients) of scleredema which was secondary to diabetes, lesions were partially improved in 5 patients who had controlled diabetes, although it was difficult to control diabetes with insulin or oral hypoglycemics in such patients. Scleredema appeared insidiously in nine of these eleven patients. The posterior neck was involved, but the face was not. In patients without diabetes, the scleredema lesions began acutely in eight of ten of them. The course of the disease was usually stationary rather than showing acute improvement. Facial involvement was found in half of all the patients. In conclusion, scleredema patients with diabetes may improve if their diabetes is controlled, and facial involvement may be related to scleredema without diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.