Racemates often have lower solubility than enantiopure compounds, and mixing of enantiomers can enhance aggregation propensity of peptides. Amyloid β (Aβ) 42 is an aggregation-prone peptide, believed to play a key role in Alzheimer’s Disease. Soluble Aβ42 aggregation intermediates (oligomers) have emerged as particularly neurotoxic. We hypothesized that addition of mirror image (D-) Aβ42 should reduce the concentration of toxic oligomers formed by natural (L-) Aβ42. We synthesized L- and D-Aβ42 and found their equimolar mixing to lead to accelerated fibril formation. Confocal microscopy with fluorescently labeled analogs of the enantiomers showed their co-localization in racemic fibrils. Reflecting enhanced fibril formation propensity, racemic Aβ42 was less prone to form soluble oligomers. This resulted in protection of cells from toxicity of L-Aβ42 at concentrations ranging up to 50 µM. In summary, mixing of Aβ42 enantiomers induces accelerated formation of non-toxic fibrils.
Nuclear factor κB (NF-κB) is a transcription factor that regulates various aspects of immune response, cell death, and differentiation as well as cancer. In this study we introduce the Py-Im polyamide 1 that binds preferentially to the sequences 5′-WGGWWW-3′ and 5′GGGWWW-3′. The compound is capable of binding to κB sites and reducing the expression of various NF-κB–driven genes including
IL6
and
IL8
by qRT-PCR. Chromatin immunoprecipitation experiments demonstrate a reduction of p65 occupancy within the proximal promoters of those genes. Genome-wide expression analysis by RNA-seq compares the DNA-binding polyamide with the well-characterized NF-κB inhibitor PS1145, identifies overlaps and differences in affected gene groups, and shows that both affect comparable numbers of TNF-α–inducible genes. Inhibition of NF-κB DNA binding via direct displacement of the transcription factor is a potential alternative to the existing antagonists.
The reactions of PCP supported Ni hydride, methyl and allyl species with CO(2) to generate Ni carboxylates are described. Computational studies suggest that all three reactions follow different pathways.
Amyloid-β (Aβ) is an intrinsically disordered peptide thought to play an important role in Alzheimer's disease (AD). It has been the target of most AD therapeutic efforts, which have repeatedly failed in clinical trials. A more predominant peptidic fragment, formed through alternative processing of the amyloid precursor protein, is the p3 peptide. p3 has received little attention, which is possibly due to the prevailing view in the AD field that it is "non-amyloidogenic." By probing the self-assembly of this peptide, we found that p3 aggregates to form oligomers and fibrils and, when compared with Aβ, displays enhanced aggregation rates. Our findings highlight the solubilizing effect of the Nterminus of Aβ and the favorable formation of structures formed through C-terminal hydrophobic peptide interfaces. Based on our findings, we suggest a reevaluation of the current therapeutic approaches targeting only the β-secretase pathway of AD, given that the αsecretase pathway is also amyloidogenic.
Marine natural products are an important source of lead compounds against many pathogenic targets. Herein, we report the discovery of lobosamides A-C from a marine actinobacterium, Micromonospora sp., representing three new members of a small but growing family of bacterially produced polyene macrolactams. The lobosamides display growth inhibitory activity against the protozoan parasite Trypanosoma brucei (lobosamide A IC50 = 0.8 μM), the causative agent of human African trypanosomiasis (HAT). The biosynthetic gene cluster of the lobosamides was sequenced and suggests a conserved cluster organization among the 26-membered macrolactams. While determination of the relative and absolute configurations of many members of this family is lacking, the absolute configurations of the lobosamides were deduced using a combination of chemical modification, detailed spectroscopic analysis, and bioinformatics. We implemented a "molecules-to-genes-to-molecules" approach to determine the prevalence of similar clusters in other bacteria, which led to the discovery of two additional macrolactams, mirilactams A and B from Actinosynnema mirum. These additional analogs have allowed us to identify specific structure-activity relationships that contribute to the antitrypanosomal activity of this class. This approach illustrates the power of combining chemical analysis and genomics in the discovery and characterization of natural products as new lead compounds for neglected disease targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.