Biomaterials for tissue engineering include natural and synthetic polymers, but their clinical application is still limited due to various disadvantages associated with the use of these polymers. This uncertainty of the polymeric approach in tissue engineering launches an opportunity to address a key question: can we eliminate the disadvantages of both natural and synthetic polymers by combining them to form a synergistic relationship? To answer this question, we fabricated scaffolds from elastin, collagen, fibrin, and electrospun polycaprolactone (PCL) with different ratios. The material characterization of these scaffolds investigated degradation, water contact angle, angiogenesis by an ex ovo chorion allantoic membrane (CAM) assay, and mechanical and structural properties. Biological activity and specific differentiation pathways (MSC, adipogenic, osteogenic, myogenic, and chondrogenic) were studied by using human adipose-derived stem cells. Results indicated that all composite polymers degraded at a different rate, thus affecting their mechanical integrity. Cell-based assays demonstrated continual proliferative and viable properties of the cells on all seeded scaffolds with the particular initiation of a differentiation pathway among which the PCL/collagen/fibrin composite was the most angiogenic material with maximum vasculature. We were able to tailor the physical and biological properties of PCL-based composites to form a synergistic relationship for various tissue regeneration applications.
Current gold standard to treat soft tissue injuries caused by trauma and pathological condition are autografts and off the shelf fillers, but they have inherent weaknesses like donor site morbidity, immuno-compatibility and graft failure. To overcome these limitations, tissue-engineered polymers are seeded with stem cells to improve the potential to restore tissue function. However, their interaction with native tissue is poorly understood so far. To study these interactions and improve outcomes, we have fabricated scaffolds from natural polymers (collagen, fibrin and elastin) by custom-designed processes and their material properties such as surface morphology, swelling, wettability and chemical cross-linking ability were characterised. By using 3D scaffolds, we comprehensive assessed survival, proliferation and phenotype of adipose-derived stem cells in vitro. In vivo, scaffolds were seeded with adipose-derived stem cells and implanted in a rodent model, with X-ray microtomography, histology and immunohistochemistry as read-outs. Collagen-based materials showed higher cell adhesion and proliferation in vitro as well as higher adipogenic properties in vivo. In contrast, fibrin demonstrated poor cellular and adipogenesis properties but higher angiogenesis. Elastin formed the most porous scaffold, with cells displaying a non-aggregated morphology in vitro while in vivo elastin was the most degraded scaffold. These findings of how polymers present in the natural polymers mimicking ECM and seeded with stem cells affect adipogenesis in vitro and in vivo can open avenues to design 3D grafts for soft tissue repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.