The synthesis and characterization of new water-soluble dinuclear palladacycles of the general formula [{Pd(R-C^N-SO3Na)(μ-AcO)}2] (R = H (1), OMe (2), Cl (3)) incorporating an ortho-metalated sodium 4-(N-benzylideneamino)benzenesulfonate moiety is reported. These complexes have been revealed to be excellent phosphine-free catalysts for the synthesis of functionalized nucleoside analogues involving a low-temperature Suzuki–Miyaura coupling of 5-iodo-2′-deoxyuridine with different arylboronic acids in neat water. The potential of 1–3 as synthetic precursors was also tested, and bridging acetates were cleaved by reaction with neutral PPh3, yielding the corresponding mononuclear derivatives [Pd(R-C^N-SO3Na)(AcO)(PPh3)] (R = H (4), MeO (5), Cl (6)). Analytical and spectroscopic techniques confirmed the proposed formulas and reactivities reported for complexes 1–6. Structural characterization by X-ray diffraction of single crystals grown from samples of 4 and 6 produced the unexpected but valuable crystallization-mediated compounds 4cm and 6cm that also supported the results presented here.
Throughout the previous ten years many scientists took inspiration from natural molybdenum and tungsten-dependent oxidoreductases to build functional active site analogues. These studies not only led to an ever more detailed mechanistic understanding of the biological template, but also paved the way to atypical selectivity and activity, such as catalytic hydrogen evolution. This review is aimed at representing the last decade’s progress in the research of and with molybdenum and tungsten functional model compounds. The portrayed systems, organized according to their ability to facilitate typical and artificial enzyme reactions, comprise complexes with non-innocent dithiolene ligands, resembling molybdopterin, as well as entirely non-natural nitrogen, oxygen, and/or sulfur bearing chelating donor ligands. All model compounds receive individual attention, highlighting the specific novelty that each provides for our understanding of the enzymatic mechanisms, such as oxygen atom transfer and proton-coupled electron transfer, or that each presents for exploiting new and useful catalytic capability. Overall, a shift in the application of these model compounds towards uncommon reactions is noted, the latter are comprehensively discussed.
No abstract
A new alkyne functionalized pterin derivative was synthesized through a reaction of 7-chloropterin with propargyl alcohol in the presence of sodium hydride. The purity and chemical structure of the compound was validated by NMR (1H, 13C) spectroscopy, Mass (APCI source) spectrometry, elemental analysis, and X-ray crystallography. The title compound may be further functionalized by exploiting the yne moiety, for instance, using click chemistry. The novel pterin derivative, most notably, in contrast to typical pterin behavior, is now soluble or even well soluble in almost any solvent except water.
In this study, by employing a common synthetic protocol, an unusual and unexpected tetra-nuclear nickel dithiolene complex was obtained. The synthesis of the [Ni4(ecpdt)6]2− dianion (ecpdt = (Z)-3-ethoxy-3-oxo-1-phenylprop-1-ene-1,2-bis-thiolate) with two K+ as counter ions was then intentionally reproduced. The formation of this specific complex is attributed to the distinct dithiolene precursor used and the combination with the then coordinated counter ion in the molecular solid-state structure, as determined by X-ray diffraction. K2[Ni4(ecpdt)6] was further characterized by ESI-MS, FT-IR, UV-Vis, and cyclic voltammetry. The tetra-nuclear complex was found to have an uncommon geometry arising from the combination of four nickel centers and six dithiolene ligands. In the center of the arrangement, suspiciously long Ni–S distances were found, suggesting that the tetrameric structure can be easily split into two identical dimeric fragments or two distinct groups of monomeric fragments, for instance, upon dissolving. A proposed variable magnetism in the solid-state and in solution due to the postulated dissociation was confirmed. The Ni–S bonds of the “inner” and “outer” nickel centers differed concurrently with their coordination geometries. This observation also correlates with the fact that the complex bears two anionic charges requiring the four nickel centers to be present in two distinct oxidation states (2 × +2 and 2 × +3), i.e., to be hetero-valent. The different coordination geometries observed, together with the magnetic investigation, allowed the square planar “outer” geometry to be assigned to d8 centers, i.e., Ni2+, while the Ni3+ centers (d7) were in a square pyramidal geometry with longer Ni–S distances due to the increased number of donor atoms and interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.