N6-methyladenine (6mA) is a DNA base modification at the 6th nitrogen position; recently, it has been resurfaced as a potential reversible epigenetic mark in eukaryotes. Despite its existence, 6mA was considered to be absent due to its undetectable level. However, with the new advancements in methods, considerable 6mA distribution is identified across the plant genome. Unlike 5-methylcytosine (5mC) in the gene promoter, 6mA does not have a definitive role in repression but is exposed to have divergent regulation in gene expression. Though 6mA information is less known, the available evidences suggest its function in plant development, tissue differentiation, and regulations in gene expression. The current review article emphasizes the research advances in DNA 6mA modifications, identification, available databases, analysis tools and its significance in plant development, cellular functions and future perspectives of research.
Bhendi yellow vein mosaic virus (BYVMV) belongs to the monopartite begomovirus associated with the β satellite. As a single-stranded DNA (ssDNA) virus, it should be amenable to transcriptional and post-transcriptional gene silencing (TGS and PTGS). Previously, we had demonstrated C2, C4 and βC1 to be having different levels of influence on PTGS. Hence in the present study, a series of experiments such as agroinfiltration, chop-polymerase chain reaction (PCR), quantitative PCR (qPCR) and bisulfite next generation sequencing (NGS) were designed to analyse the involvement of BYVMV proteins on DNA methylation suppression. From the preliminary studies, we concluded that BYVMV genes were responsible for TGS suppression and C2, C4 genes from BYVMV were selected for further studies. Agroinfiltration experiments with mutant C2 and C4 partial tandem repeat (PTR) constructs of BYVMV have confirmed the role of C2 and C4 in DNA methylation impairment. The protoplast replication assay has shown that C4 was not an impediment for viral DNA replication and subsequent agroinfiltration studies with the C4 mutant BYVMV PTR construct have revealed the involvement of C4 in viral DNA movement.
Sheath blight (ShB) disease, caused by Rhizoctonia solani, is one of the major biotic stress-oriented diseases that adversely affect the rice productivity worldwide. However, the regulatory mechanisms are not understood yet comprehensively. In the current study, we had investigated the potential roles of miRNAs in economically important indica rice variety Pusa Basmati-1 upon R. solani infection by carrying out in-depth, high-throughput small RNA sequencing with a total data size of 435 million paired-end raw reads from rice leaf RNA samples collected at different time points. Detailed data analysis revealed a total of 468 known mature miRNAs and 747 putative novel miRNAs across all the libraries. Target prediction and Gene Ontology functional analysis of these miRNAs were found to be unraveling various cellular, molecular, and biological functions by targeting various plant defense-related genes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to validate the miRNAs and their putative target genes. Out of the selected miRNA-specific putative target genes, miR395a binding and its cleavage site on pentatricopeptide were determined by 5’ RACE-PCR. It might be possible that R. solani instigated chloroplast degradation by modulating the pentatricopeptide which led to increased susceptibility to fungal infection.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.