Sperm motility is an indicator of male fertility because of its importance for sperm migration through the female genital tract and for gamete interaction at fertilization. This study analyses the relationship between computer assisted semen analysis (CASA) motility patterns and sperm migration of rams in ruminant cervical mucus. In experiment 1, spermatozoa extended with sperm analysis medium (SAM) and seminal plasma were compared in terms of motility. In experiment 2, 56 semen samples were collected either with artificial vagina (AV) or electroejaculator to be compared in terms of motility performance. In experiment 3, 104 ejaculates collected by AV from 26 males were analysed via the CASA system to characterize their motility patterns. In experiment 4, ejaculates from pairs of rams (20 rams in total) were simultaneously assessed for mucus migration (ovine, caprine, bovine) and motility patterns to evaluate the correlations between both parameters. Semen collected by AV and extended in SAM allows the most reliable assessment for sperm motility. Ram spermatozoa move fast and follow a linear trajectory compared with other ruminants. Continuous line velocity (VCL) and average path velocity (VAP) are the only sperm kinematic parameters that presented significant positive correlations with the ability to migrate in sheep cervical mucus (p < 0.05). Continuous line velocity, VAP, straight line velocity and linearity are highly significantly related with migration efficiency in goat cervical mucus (p < 0.01) and only lateral head displacement is negatively related to sperm migration in bovine cervical mucus (p < 0.05). These results suggest that specific kinematic parameters confer the ability of spermatozoa to colonize and migrate through epithelial mucus with different rheological properties.
The study was aimed to assess the influence that short-term progesterone treatments have on follicular dynamics, oestrus and ovulation in sheep. The treatment was tested thereafter in a field trial to assess its fertility after AI with fresh semen. In a first experiment, 12 ewes without CL were grouped to receive a new (n = 6) or used CIDR (n = 6) for 7 days and blood samples were obtained to follow plasma progesterone profiles. In a second experiment, 39 cycling ewes were synchronized by a 7-day P4+PGF2α protocol using a new (n = 20) or a 7-day used CIDR (n = 19). Half of both groups received 400 IU eCG and half remained untreated as controls. Ultrasound ovarian examination and oestrous detection were used to compare follicular dynamics, oestrus and ovulation in both groups. In a third experiment, 288 ewes in 3 farms were synchronized by the short-term P4+PGF2α+eCG protocol and ewes were AI with fresh semen 24 h after oestrous detection. Lambing performance was used to test the fertility of the treatment. In Experiment 1, ewes with new inserts presented higher P4 concentration than ewes with used inserts throughout the sampling period (p < 0.05) and exhibited a P4 peak at days 1-2 of the treatment that was not observed in ewes with used inserts. In Experiment 2, ewes treated with new and used inserts show similar ovarian and behavioral traits (p > 0.10). However, ewes treated with eCG show shorter interval to oestrus (p = 0.004) and tend to have larger mature CL (p = 0.06). In Experiment 3, oestrous presentation and lambing performance after AI with fresh semen was considered normal compared to published results. Results suggest that the oestrous synchronization protocol based on P4+PGF2α allows little control of follicular dynamics without compromising fertility after AI with fresh semen provided that eCG is added at the end of the treatment.
The recent upgrade in IVP technology seen in cattle can be adapted to embryo production in small ruminants to overcome limitations exhibited by surgical procedures on preserving the reproductive potential of donors and the efficiency of embryo production. The aim of the present study was to assess the current procedures used in cattle for the production of IVP embryos in goats and sheep based on laparoscopic-aided ovum pick-up (LOPU) supplied oocytes. Sexually matured goat and sheep donors were treated during the breeding season with FSH and subjected to laparoscopic-guided follicular puncture under general anaesthesia. The collected cumulus-oocyte complexes were matured in medium 199 and fertilized by frozen-thawed spermatozoa using Talp medium supplemented with heparin and oestrus-sheep serum. Cleaved ova were either cultured in sheep in vitro fertilization medium plus amino acids or transferred to sheep oviducts. Blastocyst rate, hatching rate and development rate up to term were used as markers of embryo function. The results obtained for goat and sheep involving 30 and 35 donors respectively (10 and 9 LOPU sessions) were 81.2% and 85.2% of oocyte collection rate; 88.3% and 98.6% oocyte incubation rate; 85.6% and 76.0% fertilization rate; 82.4% and 93.4% of cleavage rate; 50.0% and 61.5% IVP blastocyst rate; 42.1% and 45.5% blastocyst rate in oviducts; 73.0% and 66.7% embryo survival up to term, respectively. The results are comparable to those obtained in small ruminants and in bovines suggesting that requirements for embryo production and development are similar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.