Long-term comparisons of infrared image can facilitate the assessment of breast cancer tissue growth and early tumor detection, in which longitudinal infrared image registration is a necessary step. However, it is hard to keep markers attached on a body surface for weeks, and rather difficult to detect anatomic fiducial markers and match them in the infrared image during registration process. The proposed study, automatic longitudinal infrared registration algorithm, develops an automatic vascular intersection detection method and establishes feature descriptors by shape context to achieve robust matching, as well as to obtain control points for the deformation model. In addition, competitive winner-guided mechanism is developed for optimal corresponding. The proposed algorithm is evaluated in two ways. Results show that the algorithm can quickly lead to accurate image registration and that the effectiveness is superior to manual registration with a mean error being 0.91 pixels. These findings demonstrate that the proposed registration algorithm is reasonably accurate and provide a novel method of extracting a greater amount of useful data from infrared images.
In the registration of medical images, nonrigid registration targets, images with large displacement caused by different postures of the human body, and frequent variations in image intensity due to physiological phenomena are substantial problems that make medical images less suitable for intensity-based image registration modes. These problems also greatly increase the difficulty and complexity of feature detection and matching for feature-based image registration modes. This research introduces an automatic image registration algorithm for infrared medical images that offers the following benefits: effective detection of feature points in flat regions (cold patterns) that appear due to changes in the human body’s thermal patterns, improved mismatch removal through coherent spatial mapping for improved feature point matching, and large-displacement optical flow for optimal transformation. This method was compared with various classical gold standard image registration methods to evaluate its performance. The models were compared for the three key steps of the registration process—feature detection, feature point matching, and image transformation—and the results are presented visually and quantitatively. The results demonstrate that the proposed method outperforms existing methods in all tasks, including in terms of the features detected, uniformity of feature points, matching accuracy, and control point sparsity, and achieves optimal image transformation. The performance of the proposed method with four common image types was also evaluated, and the results verify that the proposed method has a high degree of stability and can effectively register medical images under a variety of conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.