The hippocampus and parahippocampal region are essential for representing episodic memories involving various spatial locations and objects, and for using those memories for future adaptive behavior. The "dual-stream model" was initially formulated based on anatomical characteristics of the medial temporal lobe, dividing the parahippocampal region into two streams that separately process and relay spatial and nonspatial information to the hippocampus. Despite its significance, the dual-stream model in its original form cannot explain recent experimental results, and many researchers have recognized the need for a modification of the model. Here, we argue that dividing the parahippocampal region into spatial and nonspatial streams a priori may be too simplistic, particularly in light of ambiguous situations in which a sensory cue alone (e.g., visual scene) may not allow such a definitive categorization.Upon reviewing evidence, including our own, that reveals the importance of goaldirected behavioral responses in determining the relative involvement of the parahippocampal processing streams, we propose the Goal-directed Interaction of Stimulus and Task-demand (GIST) model. In the GIST model, input stimuli such as visual scenes and objects are first processed by both the postrhinal and perirhinal corticesthe postrhinal cortex more heavily involved with visual scenes and perirhinal cortex with objects-with relatively little dependence on behavioral task demand. However, once perceptual ambiguities are resolved and the scenes and objects are identified and recognized, the information is then processed through the medial or lateral entorhinal cortex, depending on whether it is used to fulfill navigational or nonnavigational goals, respectively. As complex sensory stimuli are utilized for both navigational and non-navigational purposes in an intermixed fashion in naturalistic settings, the hippocampus may be required to then put together these experiences into a coherent map to allow flexible cognitive operations for adaptive behavior to occur.
The hippocampus and its associated cortical regions in the medial temporal lobe play essential roles when animals form a cognitive map and use it to achieve their goals. As the nature of map-making involves sampling different local views of the environment and putting them together in a spatially cohesive way, visual scenes are essential ingredients in the formative process of cognitive maps. Visual scenes also serve as important cues during information retrieval from the cognitive map. Research in humans has shown that there are regions in the brain that selectively process scenes and that the hippocampus is involved in scene-based memory tasks. The neurophysiological correlates of scene-based information processing in the hippocampus have been reported as "spatial view cells" in nonhuman primates. Like primates, it is widely accepted that rodents also use visual scenes in their background for spatial navigation and other kinds of problems. However, in rodents, it is not until recently that researchers examined the neural correlates of the hippocampus from the perspective of visual scene-based information processing. With the advent of virtual reality (VR) systems, it has been demonstrated that place cells in the hippocampus exhibit remarkably similar firing correlates in the VR environment compared with that of the real-world environment. Despite some limitations, the new trend of studying hippocampal functions in a visually controlled environment has the potential to allow investigation of the input-output relationships of network functions and experimental testing of traditional computational predictions more rigorously by providing well-defined visual stimuli. As scenes are essential for navigation and episodic memory in humans, further investigation of the rodents' hippocampal systems in scene-based tasks will provide a critical functional link across different mammalian species.
Block copolymers have been investigated for fabricating functional nanomaterials due to their properties of self-assembly. We prepared polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) lamellar films which is hydrophobic block-hydrophilic polyelectrolyte block polymer have 57 kg=mol-b-57 kg=mol. The lamellar stacks are obtained by exposing the spin coated film under chloroform. The P2VP blocks were then quaternized and crosslinked to various extents using 5 wt% of iodomethane.PS-b-P2VP films showed excellent photonic bands at 630 nm after swelling with ethanol and 661 nm with water after treated with Calcium Carbonate. We observed significant band shift from 663 nm (deep red) to 531 nm (green) during UV-irradiation for 40 seconds.The phase separation process of BCP was very sensitive to the film thickness. The quarternized films with thickness varied from 0.43 mm (446 nm transmittance minimum) to 0.25 lm (478 nm transmittance minimum). This study shows that the total film thickness and UV irradiation effectively change the transmittance band by affecting the thickness of layers consisting of PS-b-P2VP photonic crystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.