BackgroundTuberculous sputum provides a sample of bacilli that must be eliminated by chemotherapy and that may go on to transmit infection. A preliminary observation that Mycobacterium tuberculosis cells contain triacylglycerol lipid bodies in sputum, but not when growing in vitro, led us to investigate the extent of this phenomenon and its physiological basis.Methods and FindingsMicroscopy-positive sputum samples from the UK and The Gambia were investigated for their content of lipid body–positive mycobacteria by combined Nile red and auramine staining. All samples contained a lipid body–positive population varying from 3% to 86% of the acid-fast bacilli present. The recent finding that triacylglycerol synthase is expressed by mycobacteria when they enter in vitro nonreplicating persistence led us to investigate whether this state was also associated with lipid body formation. We found that, when placed in laboratory conditions inducing nonreplicating persistence, two M. tuberculosis strains had lipid body levels comparable to those found in sputum. We investigated these physiological findings further by comparing the M. tuberculosis transcriptome of growing and nonreplicating persistence cultures with that obtained directly from sputum samples. Although sputum has traditionally been thought to contain actively growing tubercle bacilli, our transcript analyses refute the hypothesis that these cells predominate. Rather, they reinforce the results of the lipid body analyses by revealing transcriptional signatures that can be clearly attributed to slowly replicating or nonreplicating mycobacteria. Finally, the lipid body count was highly correlated (R2 = 0.64, p < 0.03) with time to positivity in diagnostic liquid cultures, thereby establishing a direct link between this cytological feature and the size of a potential nonreplicating population.ConclusionAs nonreplicating tubercle bacilli are tolerant to the cidal action of antibiotics and resistant to multiple stresses, identification of this persister-like population of tubercle bacilli in sputum presents exciting and tractable new opportunities to investigate both responses to chemotherapy and the transmission of tuberculosis.
Mitochondria are the major organelles that produce reactive oxygen species (ROS) and the main target of ROS-induced damage as observed in various pathological states including aging. Production of NADPH required for the regeneration of glutathione in the mitochondria is critical for scavenging mitochondrial ROS through glutathione reductase and peroxidase systems. We investigated the role of mitochondrial NADP ؉ -dependent isocitrate dehydrogenase (IDPm) in controlling the mitochondrial redox balance and subsequent cellular defense against oxidative damage. We demonstrate in this report that IDPm is induced by ROS and that decreased expression of IDPm markedly elevates the ROS generation, DNA fragmentation, lipid peroxidation, and concurrent mitochondrial damage with a significant reduction in ATP level. Conversely, overproduction of IDPm protein efficiently protected the cells from ROS-induced damage. The protective role of IDPm against oxidative damage may be attributed to increased levels of a reducing equivalent, NADPH, needed for regeneration of glutathione in the mitochondria. Our results strongly indicate that IDPm is a major NADPH producer in the mitochondria and thus plays a key role in cellular defense against oxidative stress-induced damage.Cell damage induced by oxidative stress and reactive oxygen species (ROS) 1 has been implicated in several human diseases including aging, alcohol-mediated organ damage, neurodegenerative diseases, many types of cancers, cardiovascular diseases, and UV-mediated skin disorders (1). As one of the major sources of ROS (2), mitochondria are highly susceptible to oxidative damage. ROS can damage mitochondrial enzymes directly (3), and they can cause mutation in mitochondrial DNAs (4). At the same time, ROS can change the mitochondrial transmembrane potential (⌬m), which is indicative of mitochondrial membrane integrity (5) and precedes cell death induced by various toxic compounds and cytokines (6). Recent reports indicate that mitochondrial ROS cause apoptosis (7, 8) by activating various apoptotic effectors such as cytochrome c release, procaspase-2, procaspase-9, procaspase-3, and latent apoptosis-inducing factor, which is released from the mitochondria during apoptosis (9 -11). Another report also suggested that mitochondrial ROS directly caused apoptosis of T cells (12). It was also reported that tumor necrosis factor ␣ causes a rapid production of mitochondrial ROS (13) and that ceramide, an apoptotic stimulus, also plays a crucial role in tumor necrosis factor ␣-induced mitochondrial ROS generation (14). Furthermore, several other investigators demonstrated that ROS are involved in the signaling pathway of certain growth factors (15) and cytokines (16). In addition, mitochondrial ROS, under hypoxic conditions, activate the transcription of the genes for glycolytic enzymes as well as erythropoietin and vascular endothelial growth factor by upregulating a transcriptional factor, hypoxia-inducible factor 1 (17), suggesting that mitochondrial ROS mediate cross-talk b...
NADPH is an essential cofactor for many enzymatic reactions including glutathione metabolism and fat and cholesterol biosynthesis. We have reported recently an important role for mitochondrial NADP ؉ -dependent isocitrate dehydrogenase in cellular defense against oxidative damage by providing NADPH needed for the regeneration of reduced glutathione. However, the role of cytosolic NADP ؉ -dependent isocitrate dehydrogenase (IDPc) is still unclear. We report here for the first time that IDPc plays a critical role in fat and cholesterol biosynthesis. During differentiation of 3T3-L1 adipocytes, both IDPc enzyme activity and its protein content were increased in parallel in a time-dependent manner. Increased expression of IDPc by stable transfection of IDPc cDNA positively correlated with adipogenesis of 3T3-L1 cells, whereas decreased IDPc expression by an antisense IDPc vector retarded adipogenesis. Furthermore, transgenic mice with overexpressed IDPc exhibited fatty liver, hyperlipidemia, and obesity. In the epididymal fat pads of the transgenic mice, the expressions of adipocyte-specific genes including peroxisome proliferator-activated receptor ␥ were markedly elevated. The hepatic and epididymal fat pad contents of acetylCoA and malonyl-CoA in the transgenic mice were significantly lower, whereas the total triglyceride and cholesterol contents were markedly higher in the liver and serum of transgenic mice compared with those measured in wild type mice, suggesting that the consumption rate of those lipogenic precursors needed for fat biosynthesis must be increased by elevated IDPc activity. Taken together, our findings strongly indicate that IDPc would be a major NADPH producer required for fat and cholesterol synthesis.Abnormal lipid metabolism is frequently associated with obesity and hyperlipidemia. In fat and cholesterol biosynthesis, NADPH is an essential cofactor for numerous enzymes. For instance, 3-L-hydroxylacyl-coenzyme A dehydrogenase and enoyl-coenzyme A reductase in fatty acid synthesis and hydroxymethylglutaryl-coenzyme A reductase, the rate-limiting enzyme in cholesterol biosynthesis, require NADPH for their enzyme activities. It has been demonstrated that glucose-6-phosphate dehydrogenase (G6PDH), 1 6-phosphogluconate dehydrogenase, and malic enzyme are considered as the major enzymes producing cytosolic NADPH (1). Nevertheless, the activities of these enzymes were markedly lower than that of cytosolic NADP ϩ -dependent isocitrate dehydrogenase (IDPc) in the rat liver (1, 2). Consistent with this observation, McLean and co-workers (3) reported that certain adaptive changes in the pentose phosphate pathway dehydrogenases did not take place in parallel with fat synthesis in adipose tissue and suggested that a major source of NADPH for fat synthesis could be IDPc. It is worthy of note that IDPc is expressed mainly in lipogenic tissues such as liver and adipocytes, whereas G6PDH and 6-phosphogluconate dehydrogenase are expressed ubiquitously (4, 5). These data indicate that NADPH-producing IDPc may ...
PurposeInflammation-based prognostic scores including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and lymphocyte-to-monocyte ratio (LMR) are associated with oncologic outcomes in diverse malignancies. We evaluated the predictive value of pretreatment prognostic scores in differentiating nonmuscle invasive (NMIBC) and muscle invasive bladder cancer (MIBC).Materials and MethodsConsecutive transurethral resection of bladder tumour (TURBT) cases from January 2011 to December 2013 were analysed retrospectively. Patient demographics, tumour characteristics and prognostic scores results were recorded. Receiver operating characteristics curves were used to determine prognostic score cutoffs. Univariate and multivariate binomial logistic regression analysis was performed to evaluate the association between variables and MIBC.ResultsA total of 226 patients were included, with 175 and 51 having NMIBC (stages Ta and T1) and MIBC (stage T2+) groups, respectively. Median age was 75 years and 174 patients were male. The NLR cutoff was 3.89 and had the greatest area under the curve (AUC) of 0.710, followed by LMR (cutoff<1.7; AUC, 0.650) and PLR (cutoff>218; AUC, 0.642). Full blood count samples were taken a median of 12 days prior to TURBT surgery. Multivariate logistic regression analysis identified tumour grade G3 (odds ration [OR], 32.848; 95% confidence interval [CI], 9.818-109.902; p=0.000), tumour size≥3 cm (OR, 3.353; 95% CI, 1.347-8.345; p=0.009) and NLR≥3.89 (OR, 8.244; 95% CI, 2.488-27.316; p=0.001) as independent predictors of MIBC.ConclusionsNLR may provide a simple, cost-effective and easily measured marker for MIBC. It can be performed at the time of diagnostic flexible cystoscopy, thereby assisting in the planning of further treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.