A series of conjugated polymer electrolytes (CPEs) comprising fluorene/carbazole or thiophene/carbazole backbones with quaternized ammonium iodide groups were synthesized and used in polymer solution and polymer gel electrolytes in dyesensitized solar ce
In this study, a series of gel electrolytes prepared from blends of alternating conjugated polymer electrolytes (CPEs)/poly(ethylene oxide) (PEO) were developed for use in quasi-solid-state dye-sensitized solar cells (DSSCs). The alternating CPEs poly(N-(3'-((N,N-dimethyl)-N-ethylammonium)propyl)-3,6-carbazole)-alt-(9,9-dioctyl-2,7-fluorene)diiodide, poly(N-(3'-((N,N-dimethyl)-N-ethylammonium)propyl)-3,6-carbazole)-alt-(9,9-bis(2-(2-methoxyethoxy)ethyl)-2,7-fluorene)diiodide (MPCFO-E), and poly(N-(3'-((N,N-dimethyl)-N-ethylammonium)propyl)-3,6-carbazole)-alt-(siloxane substituted-2,7-fluorene)diiodide (MPCFS-E) were synthesized through copolymerization of carbazole units (featuring quaternized ammonium iodide groups) and fluorene units featuring flexible side chains (9,9-dioctylfluorene, ethylene oxide-substituted fluorene, and siloxane-substituted fluorene, respectively). The MPCFO-E/PEO-based and MPCFS-E/PEO-based DSSCs exhibited lower electrochemical resistances, superior photovoltaic (PV) properties, and improved PV stabilities relative to those of the corresponding PEO-based DSSC. Among the studied systems, the DSSC based on the MPCFO-E (0.5 wt.%)/PEO blend electrolyte exhibited the best PV performance, with a short current density of 4.97 mA cm(-2) and a photoenergy conversion efficiency of 1.17%
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.