Mesenchymal stem cells (MSCs) are known to have a potential for articular cartilage regeneration. However, most studies focused on focal cartilage defect through surgical implantation. For the treatment of generalized cartilage loss in osteoarthritis, an alternative delivery strategy would be more appropriate. The purpose of this study was to assess the safety and efficacy of intra-articular injection of autologous adipose tissue derived MSCs (AD-MSCs) for knee osteoarthritis. We enrolled 18 patients with osteoarthritis of the knee and injected AD MSCs into the knee. The phase I study consists of three dose-escalation cohorts; the low-dose (1.0 3 10 7 cells), mid-dose (5.0 3 10 7 ), and high-dose (1.0 3 10 8 ) group with three patients each. The phase II included nine patients receiving the high-dose. The primary outcomes were the safety and the Western Ontario and McMaster Universities Osteoarthritis index (WOMAC) at 6 months. Secondary outcomes included clinical, radiological, arthroscopic, and histological evaluations. There was no treatment-related adverse event. The WOMAC score improved at 6 months after injection in the high-dose group. The size of cartilage defect decreased while the volume of cartilage increased in the medial femoral and tibial condyles of the high-dose group. Arthroscopy showed that the size of cartilage defect decreased in the medial femoral and medial tibial condyles of the high-dose group. Histology demonstrated thick, hyaline-like cartilage regeneration. These results showed that intra-articular injection of 1.0 3 10 8 AD MSCs into the osteoarthritic knee improved function and pain of the knee joint without causing adverse events, and reduced cartilage defects by regeneration of hyaline-like articular cartilage.
Crystal clear: The liquid crystallinity of graphene oxide platelets in aqueous dispersion is demonstrated. Graphene oxide sheets are arranged around liquid‐crystal disclinations (see picture). The orientation of the liquid crystals can be manipulated by a magnetic field or mechanical deformation.
While global energy consumption has steadily increased in the past decades due to industrialization and population growth, [ 1 ] society is facing a problem with the depletion of fossil energy resources as well as environmental problems (such as global warming, carbon dioxide emissions, and damage to the ozone layer). [ 2 ] These challenges can be addressed by renewable energy resources, which are always available everywhere. [ 1 , 2 ] Outdoor renewable energy sources such as solar energy (15 000 μ W/cm 3 ), [ 3 , 4 ] wind energy (380 μ W/cm 3 ), [ 5 ] and wave energy (1 000 W/cm of wave crest length) [ 6 , 7 ] can provide largescale needs of power. However, for driving small electronics in indoor or concealed environments [ 3 , 8 ] (such as in tunnels, clothes, and artifi cial skin) and implantable biomedical devices, innovative approaches have to be developed.One way of energy harvesting without such restraints is to utilize piezoelectric materials that can convert vibrational and mechanical energy sources from human activities such as pressure, bending, and stretching motions into electrical energy. [9][10][11] Wang and co-workers [ 9 , 10 , 12-15 ] have used piezoelectric ZnO nanowire arrays to develop a nanogenerator technologies, who have demonstrated the feasibility using this type of generator to power commercial light-emitting diodes (LEDs), [ 13 ] liquid crystal displays, [ 14 ] and wireless data transmission. [ 15 ] These nanogenerators can also convert tiny bits of biomechanical energy (from sources such as the movement of the diaphragm, the relaxation and contraction of muscle, heartbeat, and the circulation of blood) into power sources. [ 16 , 17 ] Recently, there have been attempts to fabricate thin fi lmtype nanogenerators [ 11 , 18 ] with perovskite ceramic materials (PbZr x Ti 1-x O 3 and BaTiO 3 ), which have a high level of inherent piezoelectric properties. The BaTiO 3 thin fi lm nanogenerator has demonstrated by the authors [ 11 ] using the transfer process [19][20][21][22] of high temperature annealed perovskite thin fi lm from bulk substrates onto fl exible substrates; it generates a much higher level of power density than other devices with a similar structure. [ 10 ] Herein, we report the nanocomposite generator (NCG) achieving a simple, low-cost, and large area fabrication based on BaTiO 3 nanoparticles (NPs) synthesized via a hydrothermal reaction (see Method S1) [ 23 ] and graphitic carbons, such as single-walled and multi-walled carbon nanotubes (SW/MW-CNTs), and reduced graphene oxide (RGO). The BaTiO 3 NPs and carbon nanomaterials are dispersed in polydimethylsiloxane (PDMS) by mechanical agitation to produce a piezoelectric nanocomposite (p-NC). The p-NC is spin-casted onto metalcoated plastic substrates and cured in an oven. Under periodic external mechanical deformation by bending stage or biomechanical movements from fi nger/feet of human body, electric signals are repeatedly generated from the NCG device and used to operate a commercial red LED.The schematic diagrams ...
Post-translational addition of O-linked N-acetylglucosamine (O-GlcNAc) to p53 is known to occur, but the site of O-GlcNAcylation and its effects on p53 are not understood. Here, we show that Ser 149 of p53 is O-GlcNAcylated and that this modification is associated with decreased phosphorylation of p53 at Thr 155, which is a site that is targeted by the COP9 signalosome, resulting in decreased p53 ubiquitination. Accordingly, O-GlcNAcylation at Ser 149 stabilizes p53 by blocking ubiquitin-dependent proteolysis. Our results indicate that the dynamic interplay between O-GlcNAc and O-phosphate modifications coordinately regulate p53 stability and activity.
Outstanding pristine properties of carbon nanotubes and graphene have limited the scope for real-life applications without precise controllability of the material structures and properties. This invited article to celebrate the 25th anniversary of Advanced Materials reviews the current research status in the chemical modification/doping of carbon nanotubes and graphene and their relevant applications with optimized structures and properties. A broad aspect of specific correlations between chemical modification/doping schemes of the graphitic carbons with their novel tunable material properties is summarized. An overview of the practical benefits from chemical modification/doping, including the controllability of electronic energy level, charge carrier density, surface energy and surface reactivity for diverse advanced applications is presented, namely flexible electronics/optoelectronics, energy conversion/storage, nanocomposites, and environmental remediation, with a particular emphasis on their optimized interfacial structures and properties. Future research direction is also proposed to surpass existing technological bottlenecks and realize idealized graphitic carbon applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.