Crystal clear: The liquid crystallinity of graphene oxide platelets in aqueous dispersion is demonstrated. Graphene oxide sheets are arranged around liquid‐crystal disclinations (see picture). The orientation of the liquid crystals can be manipulated by a magnetic field or mechanical deformation.
Compositional engineering has been used to overcome difficulties in fabricating high-quality phase-pure formamidinium perovskite films together with its ambient instability. However, this comes alongside an undesirable increase in bandgap that sacrifices the device photocurrent. Here we report the fabrication of phase-pure formamidinium-lead tri-iodide perovskite films with excellent optoelectronic quality and stability. Incorporation of 1.67 mol% of 2D phenylethylammonium lead iodide into the precursor solution enables the formation of phase-pure formamidinium perovskite with an order of magnitude enhanced photoluminescence lifetime. The 2D perovskite spontaneously forms at grain boundaries to protect the formamidinium perovskite from moisture and suppress ion migration. A stabilized power conversion efficiency (PCE) of 20.64% (certified stabilized PCE of 19.77%) is achieved with a short-circuit current density exceeding 24 mA cm−2 and an open-circuit voltage of 1.130 V, corresponding to a loss-in-potential of 0.35 V, and significantly enhanced operational stability.
Outstanding pristine properties of carbon nanotubes and graphene have limited the scope for real-life applications without precise controllability of the material structures and properties. This invited article to celebrate the 25th anniversary of Advanced Materials reviews the current research status in the chemical modification/doping of carbon nanotubes and graphene and their relevant applications with optimized structures and properties. A broad aspect of specific correlations between chemical modification/doping schemes of the graphitic carbons with their novel tunable material properties is summarized. An overview of the practical benefits from chemical modification/doping, including the controllability of electronic energy level, charge carrier density, surface energy and surface reactivity for diverse advanced applications is presented, namely flexible electronics/optoelectronics, energy conversion/storage, nanocomposites, and environmental remediation, with a particular emphasis on their optimized interfacial structures and properties. Future research direction is also proposed to surpass existing technological bottlenecks and realize idealized graphitic carbon applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.