Intrinsically unfolded proteins (IUPs) do not obey the golden rule of structural biology, 3D structure = function, as they manifest their inherent functions without resorting to three-dimensional structures. Absence of a compact globular topology in these proteins strongly implies that their ligand recognition processes should involve factors other than spatially well-defined binding pockets. Heteronuclear multidimensional (HetMulD) NMR spectroscopy assisted with a stable isotope labeling technology is a powerful tool for quantitatively investigating detailed structural features in IUPs. In particular, it allows us to delineate the presence and locations of pre-structured motifs (PreSMos) on a per-residue basis. PreSMos are the transient local structural elements that presage target-bound conformations and act as specificity determinants for IUP recognition by target proteins. Here, we present a brief chronicle of HetMulD NMR studies on IUPs carried out over the past two decades along with a discussion on the functional significance of PreSMos in IUPs.
The hepatitis B virus x protein (HBX) is expressed in HBVinfected liver cells and can interact with a wide range of cellular proteins. In order to understand such promiscuous behavior of HBX we expressed a truncated mini-HBX protein (named Tr-HBX) (residues 18-142) with 5 Cys Ser → mutations and characterized its structural features using circular dichroism (CD) spectropolarimetry, NMR spectroscopy as well as bioinformatics tools for predicting disorder in intrinsically unstructured proteins (IUPs). The secondary structural content of Tr-HBX from CD data suggests that Tr-HBX is only partially folded. The protein disorder prediction by IUPred reveals that the unstructured region encompasses its N-terminal ~30 residues of Tr-HBX. A two-dimensional 1 H-15 N HSQC NMR spectrum exhibits fewer number of resonances than expected, suggesting that Tr-HBX is a hybrid type IUP where its folded Cterminal half coexists with a disordered N-terminal region. Many IUPs are known to be capable of having promiscuous interactions with a multitude of target proteins. Therefore the intrinsically disordered nature of Tr-HBX revealed in this study provides a partial structural basis for the promiscuous structure-function behavior of HBX.
p53 is an important tumor-suppressor protein deactivation of which by mdm2 results in cancers. A SUMO-specific protease 4 (SUSP4) was shown to rescue p53 from mdm2-mediated deactivation, but the mechanism is unknown. The discovery by NMR spectroscopy of a "p53 rescue motif" in SUSP4 that disrupts p53-mdm2 binding is presented. This 29-residue motif is pre-populated with two transient helices connected by a hydrophobic linker. The helix at the C-terminus binds to the well-known p53-binding pocket in mdm2 whereas the N-terminal helix serves as an affinity enhancer. The hydrophobic linker binds to a previously unidentified hydrophobic crevice in mdm2. Overall, SUSP4 appears to use two synergizing modules, the p53 rescue motif described here and a globular-structured SUMO-binding catalytic domain, to stabilize p53. A p53 rescue motif peptide exhibits an anti-tumor activity in cancer cell lines expressing wild-type p53. A pre-structures motif in the intrinsically disordered proteins is thus important for target recognition.
p53 is an important tumor-suppressor protein deactivation of which by mdm2 results in cancers.ASUMOspecific protease 4( SUSP4) was shown to rescue p53 from mdm2-mediated deactivation, but the mechanism is unknown. The discovery by NMR spectroscopyofa"p53 rescue motif"in SUSP4 that disrupts p53-mdm2 binding is presented. This 29residue motif is pre-populated with two transient helices connected by ahydrophobic linker.The helix at the C-terminus binds to the well-known p53-binding pocket in mdm2 whereas the N-terminal helix serves as an affinity enhancer.T he hydrophobic linker binds to ap reviously unidentified hydrophobic crevice in mdm2. Overall, SUSP4 appears to use two synergizing modules,t he p53 rescue motif described here and ag lobular-structured SUMO-binding catalytic domain, to stabilizep 53. Ap 53 rescue motif peptide exhibits an antitumor activity in cancer cell lines expressing wild-type p53. A pre-structures motif in the intrinsically disordered proteins is thus important for target recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.