An extracellular gelatinolytic enzyme obtained from the newly isolated Bacillus subtilis JB1, a thermophilic microorganism relevant to the aerobic biodegradation process of fish-meal production, was purified via ammonium sulfate precipitation, Sephadex G-200 Gel filtration chromatography, and one-dimensional gel electrophoresis separation and subsequently identified via peptide mass fingerprinting and chemically assisted fragmentation matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The subtilisin JB1 gene was sequenced and its recombinant protein prosubtilisin JB1 was expressed in Escherichia coli, and the purified prosubtilisin JB1 (62 kDa) protein was digested with gelatin, bovine serum albumin, azocasein, fibrinogen, and the fluorogenic peptide substrate Ala-Ala-Phe-7-amido-4-methylcoumarin hydrochloride, whereas the serine protease inhibitors phenylmethylsulfonyl fluoride and chymostatin completely inhibited its enzyme activity at an optimal pH of 7.5. Thus, our results show that subtilisin JB1 may serve as a potential source material for use in industrial applications of proteolytic enzymes and microorganisms for fishery waste degradation and fish by-product processing.
Cathepsin L is an important protease in the initiation of protein degradation and one of the most powerful endopeptidases. In this study, we cloned mud loach (Misgurnus mizolepis) cathepsin L (MlCtL) cDNA, and the pro-mature enzyme of MlCtL (proMlCtL) was expressed in Escherichia coli as a fusion protein with glutathione S-transferase in a pGEX-4 T-1 vector. The recombinant proMlCtL was overexpressed in E. coli DH5αMCR as a 62-kDa protein. Its activity was quantified by measuring the cleavage of synthetic fluorogenic peptide substrates, and the protease activity of proMlCtL was also demonstrated by gelatin zymography. Antipain and leupeptin were shown to inhibit the protease activity of proMlCtL. Our results suggest that the structural features and evolutionary relationship of the mud loach cathepsin L gene were similar to that of the other mammalian cathepsin Ls; however, the proMlCtL protein was more stable at neutral and alkaline pH. The optimum temperature for the proMlCtL enzyme was found to be 40 °C. In addition, proMlCtL activity was dependent upon the presence of several metal ions and detergents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.