Over 20 enzymes denoted as cyclomaltodextrinase, maltogenic amylase, or neopullulanase that share 40 -86% sequence identity with each other are found in public data bases. These enzymes are distinguished from typical ␣-amylases by containing a novel N-terminal domain and exhibiting preferential substrate specificities for cyclomaltodextrins (CDs) over starch. In this research field, a great deal of confusion exists regarding the features distinguishing the three groups of enzymes from one another. Although a different enzyme code has been assigned to each of the three different enzyme names, even a single differentiating enzymatic property has not been documented in the literature. On the other hand, an outstanding question related to this issue concerns the structural basis for the preference of these enzymes for CDs. To clarify the confusion and to address this question, we have determined the structures of two enzymes, one from alkalophilic Bacillus sp. I-5 and named cyclomaltodextrinase and the other from a Thermus species and named maltogenic amylase. The structure of the Bacillus enzyme reveals a dodecameric assembly composed of six copies of the dimer, which is the structural and functional unit of the Thermus enzyme and an enzyme named neopullulanase. The structure of the Thermus enzyme in complex with -CD led to the conclusion that Trp 47 , a well conserved N-terminal domain residue, contributes greatly to the preference for -CD. The common dimer formation through the novel N-terminal domain, which contributes to the preference for CDs by lining the active-site cavity, convincingly indicates that the three groups of enzymes are not different enough to preserve the different names and enzyme codes.
Hepatocellular carcinoma harbors numerous genomic and epigenomic aberrations of DNA copy numbers and DNA methylation. Transcriptomic deregulation by these aberrations plays key driver roles in heterogeneous progression of cancers. Here, we profile DNA copy numbers, DNA methylation, and messenger RNA expression levels from 64 cases of hepatocellular carcinoma specimens. We find that the frequencies of the aberrancies of the DNA copy-number-correlated (CNVcor) expression genes and the methylation-correlated expression (METcor) genes are co-regulated significantly. Multi-omics integration of the CNVcor and METcor genes reveal three prognostic subtypes of hepatocellular carcinoma, which can be validated by an independent data. The most aggressive subtype expressing stemness genes has frequent BAP1 mutations, implying its pivotal role in the aggressive tumor progression. In conclusion, our integrative analysis of genomic and epigenomic regulation provides new insights on the multi-layered pathobiology of hepatocellular carcinoma, which might be helpful in developing precision management for hepatocellular carcinoma patients.
BackgroundDendritic cells (DCs) are the most potent antigen-presenting cells that link innate and adaptive immune responses, playing a pivotal role in triggering antigen-specific immunity. Antigen uptake by DCs induces maturational changes that include increased surface expression of major histocompatibility complex (MHC) and costimulatory molecules. In addition, DCs actively migrate to regional lymph nodes and activate antigen-specific naive T cells after capturing antigens. We characterize the functional changes of DCs infected with Orientia tsutsugamushi, the causative agent of scrub typhus, since there is limited knowledge of the role played by DCs in O. tsutsugamushi infection.Methodology/Principal Finding O. tsutsugamushi efficiently infected bone marrow-derived DCs and induced surface expression of MHC II and costimulatory molecules. In addition, O. tsutsugamushi induced autophagy activation, but actively escaped from this innate defense system. Infected DCs also secreted cytokines and chemokines such as IL-6, IL-12, MCP5, MIP-1α, and RANTES. Furthermore, in vitro migration of DCs in the presence of a CCL19 gradient within a 3D collagen matrix was drastically impaired when infected with O. tsutsugamushi. The infected cells migrated much less efficiently into lymphatic vessels of ear dermis ex vivo when compared to LPS-stimulated DCs. In vivo migration of O. tsutsugamushi-infected DCs to regional lymph nodes was significantly impaired and similar to that of immature DCs. Finally, we found that MAP kinases involved in chemotactic signaling were differentially activated in O. tsutsugamushi-infected DCs.Conclusion/SignificanceThese results suggest that O. tsutsugamushi can target DCs to exploit these sentinel cells as replication reservoirs and delay or impair the functional maturation of DCs during the bacterial infection in mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.