This study aimed to develop an intuitive gait-related motor imagery (MI)-based hybrid brain-computer interface (BCI) controller for a lower-limb exoskeleton and investigate the feasibility of the controller under a practical scenario including stand-up, gait-forward, and sit-down. A filter bank common spatial pattern (FBCSP) and mutual information-based best individual feature (MIBIF) selection were used in the study to decode MI electroencephalogram (EEG) signals and extract a feature matrix as an input to the support vector machine (SVM) classifier. A successive eye-blink switch was sequentially combined with the EEG decoder in operating the lower-limb exoskeleton. Ten subjects demonstrated more than 80% accuracy in both offline (training) and online. All subjects successfully completed a gait task by wearing the lower-limb exoskeleton through the developed real-time BCI controller. The BCI controller achieved a time ratio of 1.45 compared with a manual smartwatch controller. The developed system can potentially be benefit people with neurological disorders who may have difficulties operating manual control.
This study aims to bridge the gap between the discrepant views of existing studies in different modalities on the cognitive effect of video game play. To this end, we conducted a set of tests with different modalities within each participant: (1) Self-Reports Analyses (SRA) consisting of five popular self-report surveys, and (2) a standard Behavioral Experiment (BE) using pro- and antisaccade paradigms, and analyzed how their results vary between Video Game Player (VGP) and Non-Video Game Player (NVGP) participant groups. Our result showed that (1) VGP scored significantly lower in Behavioral Inhibition System (BIS) than NVGP (p = 0.023), and (2) VGP showed significantly higher antisaccade error rate than NVGP (p = 0.005), suggesting that results of both SRA and BE support the existing view that video game play has a maleficent impact on the cognition by increasing impulsivity. However, the following correlation analysis on the results across individual participants found no significant correlation between SRA and BE, indicating a complex nature of the cognitive effect of video game play.
Steady-state somatosensory-evoked potential- (SSSEP-) based brain-computer interfaces (BCIs) have been applied for assisting people with physical disabilities since it does not require gaze fixation or long-time training. Despite the advancement of various noninvasive electroencephalogram- (EEG-) based BCI paradigms, researches on SSSEP with the various frequency range and related classification algorithms are relatively unsettled. In this study, we investigated the feasibility of classifying the SSSEP within high-frequency vibration stimuli induced by a versatile coin-type eccentric rotating mass (ERM) motor. Seven healthy subjects performed selective attention (SA) tasks with vibration stimuli attached to the left and right index fingers. Three EEG feature extraction methods, followed by a support vector machine (SVM) classifier, have been tested: common spatial pattern (CSP), filter-bank CSP (FBCSP), and mutual information-based best individual feature (MIBIF) selection after the FBCSP. Consequently, the FBCSP showed the highest performance at
71.5
±
2.5
% for classifying the left and right-hand SA tasks than the other two methods (i.e., CSP and FBCSP-MIBIF). Based on our findings and approach, the high-frequency vibration stimuli using low-cost coin motors with the FBCSP-based feature selection can be potentially applied to developing practical SSSEP-based BCI systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.