Electrospray processing utilizes the balance of electrostatic forces and surface tension within a charged spray to produce charged microdroplets with a narrow dispersion in size. In electrospray deposition, each droplet carries a small quantity of suspended material to a target substrate. Past electrospray deposition results fall into two major categories: (1) continuous spray of films onto conducting substrates and (2) spray of isolated droplets onto insulating substrates. A crossover regime, or a self-limited spray, has only been limitedly observed in the spray of insulating materials onto conductive substrates. In such sprays, a limiting thickness emerges, where the accumulation of charge repels further spray. In this study, we examined the parametric spray of several glassy polymers to both categorize past electrospray deposition results and uncover the critical parameters for thickness-limited sprays. The key parameters for determining the limiting thickness were (1) field strength and (2) spray temperature, related to (i) the necessary repulsive field and (ii) the ability for the deposited materials to swell in the carrier solvent vapor and redistribute charge. These control mechanisms can be applied to the uniform or controllably-varied microscale coating of complex three-dimensional objects.
Rechargeable electrochemical cells with metallic anodes are of increasing scientific and technological interest. The complex composition, poorly defined morphology, heterogeneous chemistry, and unpredictable mechanics of interphases formed spontaneously on the anodes are often examined but rarely controlled. Here, we couple computational studies with experimental analysis of well-defined LiAl electrodes in realistic electrochemical environments to design anodes and interphases of known composition. We compare phase behavior, Li binding energies, and activation energy barriers for adatom transport and study their effects on the electrochemical reversibility of battery cells. As an illustration of potential practical benefits of our findings, we create cells in which LiAl anodes protected by Langmuir-Blodgett MoS2 interphases are paired with 4.1 mAh cm−2 LiNi0.8Co0.1Mn0.1O2 cathodes. These studies reveal that small- and larger-format (196 mAh, 294 Wh kg−1, and 513 Wh liter−1) cells based on protected LiAl anodes exhibit high reversibility and support stable Li migration during recharge of the cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.