Strongly coupled Nafion molecules and ordered porous CdS networks are fabricated for visible-light photoelectrochemical (PEC) hydrogen evolution. The Nafion layer coating shifts the band position of CdS upward and accelerates charge transfer in the photoelectrode/electrolyte interface. It is highly expected that the strong coupling effect between organic and inorganic materials will provide new routes to advance PEC water splitting.
Cadmium sulfide was popularly utilized as a light harvesting material for photoelectrochemical (PEC) water splitting, however, the drawback of poor durability limits its practical application. Herein, we show that a catalytically active and chemically inert cadmium indium sulfide (CdInS) can improve the stability and even photocurrent of a CdS photoelectrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.