Garnet-structured solid electrolytes have been extensively studied for a solid-state lithium rechargeable battery. Previous works have been mostly focused on the materials' development and basic electrochemical properties but not the cathode/electrolyte interface. Understanding the cathode interface is critical to enhance chemical stability and electrochemical performance of a solid-state battery cell. In this work, we studied thoroughly the cathode/electrolyte interface between LiCoO 2 and Li 7 La 3 Zr 2 O 12 (LLZO). It was found that the high-temperature process to fuse LiCoO 2 and LLZO induced cross-diffusion of elements and formation of the tetragonal LLZO phase at the interface. These degradations affected electrochemical performance, especially the initial Coulombic efficiency and cycle life. In a clean cathode interface without the thermal process, an irreversible electrochemical decomposition at > ∼ 3.0 V vs Li + /Li was identified. The decomposition was able to be avoided by a surface modification of LLZO (e.g., Co-diffused surface layer and/or presence of an interlayer, Li 3 BO 3 ), and the surface modification was equally important to suppress a reaction during air storage. In a LiCoO 2 / LLZO interface, it is important to separate direct contacts between LiCoO 2 and pure LLZO.
To achieve a high reversibility and long cycle life for lithium-oxygen (Li-O) batteries, the irreversible formation of LiO, inevitable side reactions, and poor charge transport at the cathode interfaces should be overcome. Here, we report a rational design of air cathode using a cobalt nitride (CoN) functionalized carbon nanofiber (CNF) membrane as current collector-catalyst integrated air cathode. Brush-like CoN nanorods are uniformly anchored on conductive electrospun CNF papers via hydrothermal growth of Co(OH)F nanorods followed by nitridation step. CoN-decorated CNF (CoN/CNF) cathode exhibited excellent electrochemical performance with outstanding stability for over 177 cycles in Li-O cells. During cycling, metallic CoN nanorods provide sufficient accessible reaction sites as well as facile electron transport pathway throughout the continuously networked CNF. Furthermore, thin oxide layer (<10 nm) formed on the surface of CoN nanorods promote reversible formation/decomposition of film-type LiO, leading to significant reduction in overpotential gap (∼1.23 V at 700 mAh g). Moreover, pouch-type Li-air cells using CoN/CNF cathode stably operated in real air atmosphere even under 180° bending. The results demonstrate that the favorable formation/decomposition of reaction products and mediation of side reactions are hugely governed by the suitable surface chemistry and tailored structure of cathode materials, which are essential for real Li-air battery applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.